1,833 research outputs found

    Autonomous computational intelligence-based behaviour recognition in security and surveillance

    Get PDF
    This paper presents a novel approach to sensing both suspicious, and task-specific behaviours through the use of advanced computational intelligence techniques. Locating suspicious activity in surveillance camera networks is an intensive task due to the volume of information and large numbers of camera sources to monitor. This results in countless hours of video data being streamed to disk without being screened by a human operator. To address this need, there are emerging video analytics solutions that have introduced new metrics such as people counting and route monitoring, alongside more traditional alerts such as motion detection. There are however few solutions that are sufficiently robust to reduce the need for human operators in these environments, and new approaches are needed to address the uncertainty in identifying and classifying human behaviours, autonomously, from a video stream. In this work we present an approach to address the autonomous identification of human behaviours derived from human pose analysis. Behavioural recognition is a significant challenge due to the complex subtleties that often make up an action; the large overlap in cues results in high levels of classification uncertainty. False alarms are significant impairments to autonomous detection and alerting systems, and over reporting can lead to systems being muted, disabled, or decommissioned. We present results on a Computational-Intelligence based Behaviour Recognition (CIBR) that utilises artificial intelligence to learn, optimise, and classify human activity. We achieve this through extraction of skeleton recognition of human forms within an image. A type-2 Fuzzy logic classifier then converts the human skeletal forms into a set of base atomic poses (standing, walking, etc.), after which a Markov-chain model is used to order a pose sequence. Through this method we are able to identify, with good accuracy, several classes of human behaviour that correlate with known suspicious, or anomalous, behaviours

    Future Person Localization in First-Person Videos

    Full text link
    We present a new task that predicts future locations of people observed in first-person videos. Consider a first-person video stream continuously recorded by a wearable camera. Given a short clip of a person that is extracted from the complete stream, we aim to predict that person's location in future frames. To facilitate this future person localization ability, we make the following three key observations: a) First-person videos typically involve significant ego-motion which greatly affects the location of the target person in future frames; b) Scales of the target person act as a salient cue to estimate a perspective effect in first-person videos; c) First-person videos often capture people up-close, making it easier to leverage target poses (e.g., where they look) for predicting their future locations. We incorporate these three observations into a prediction framework with a multi-stream convolution-deconvolution architecture. Experimental results reveal our method to be effective on our new dataset as well as on a public social interaction dataset.Comment: Accepted to CVPR 201

    A survey on human performance capture and animation

    Get PDF
    With the rapid development of computing technology, three-dimensional (3D) human body models and their dynamic motions are widely used in the digital entertainment industry. Human perfor- mance mainly involves human body shapes and motions. Key research problems include how to capture and analyze static geometric appearance and dynamic movement of human bodies, and how to simulate human body motions with physical e�ects. In this survey, according to main research directions of human body performance capture and animation, we summarize recent advances in key research topics, namely human body surface reconstruction, motion capture and synthesis, as well as physics-based motion sim- ulation, and further discuss future research problems and directions. We hope this will be helpful for readers to have a comprehensive understanding of human performance capture and animatio

    A Navigation System for the Visually Impaired: A Fusion of Vision and Depth Sensor

    Get PDF
    For a number of years, scientists have been trying to develop aids that can make visually impaired people more independent and aware of their surroundings. Computer-based automatic navigation tools are one example of this, motivated by the increasing miniaturization of electronics and the improvement in processing power and sensing capabilities. This paper presents a complete navigation system based on low cost and physically unobtrusive sensors such as a camera and an infrared sensor. The system is based around corners and depth values from Kinect’s infrared sensor. Obstacles are found in images from a camera using corner detection, while input from the depth sensor provides the corresponding distance. The combination is both efficient and robust. The system not only identifies hurdles but also suggests a safe path (if available) to the left or right side and tells the user to stop, move left, or move right. The system has been tested in real time by both blindfolded and blind people at different indoor and outdoor locations, demonstrating that it operates adequately.</jats:p

    Exploring Space Syntax Integration at Public Transport Hubs and Public Squares Using Drone Footage

    Get PDF
    Space Syntax theory is a methodological framework for describing and analysing the relationships between spaces and buildings. The fundamental building blocks of Space Syntax are called axial lines, which represent lines of sight from a specific point in space. These lines can then be used to quantitatively analyse the integration (or attractiveness) of an area. However, many public squares and transport hubs are crossed by roads which prove a hinderance when walking although not impairing the sightlines of pedestrians. The aim of this paper is to test how this limitation affects the concept and whether Space Syntax is still useful to understand how people move in such areas. Seven public squares and transport hubs in Malmö (Sweden) were selected and their Space Syntax integration was calculated. These values were compared with pedestrian detections from the same areas based on video recordings from a drone. When aggregating the areas into several levels based on their integration value, the result shows a clear link between Space Syntax integration and the number of pedestrian detections made at each location, demonstrating how this measure could be useful for understanding micromobility usage on a small scale

    Example Based Caricature Synthesis

    Get PDF
    The likeness of a caricature to the original face image is an essential and often overlooked part of caricature production. In this paper we present an example based caricature synthesis technique, consisting of shape exaggeration, relationship exaggeration, and optimization for likeness. Rather than relying on a large training set of caricature face pairs, our shape exaggeration step is based on only one or a small number of examples of facial features. The relationship exaggeration step introduces two definitions which facilitate global facial feature synthesis. The first is the T-Shape rule, which describes the relative relationship between the facial elements in an intuitive manner. The second is the so called proportions, which characterizes the facial features in a proportion form. Finally we introduce a similarity metric as the likeness metric based on the Modified Hausdorff Distance (MHD) which allows us to optimize the configuration of facial elements, maximizing likeness while satisfying a number of constraints. The effectiveness of our algorithm is demonstrated with experimental results

    CASA 2009:International Conference on Computer Animation and Social Agents

    Get PDF
    • …
    corecore