235 research outputs found

    mCast: An SDN-based resource-eficient live video streaming architecture with ISP-CDN collaboration

    Get PDF
    The rise of Software Defined Networking (SDN) presents an opportunity to overcome the limitations of rigid and static traditional Internet architecture and provide services like network layer multicast for live video streaming. In this paper we propose mCast, an SDN-based architecture for live streaming, to reduce the utilization of network and system resources for both Internet Service Providers (ISP) and Content Delivery Networks (CDN) by using multicast over the Internet. We propose a communication framework between ISPs and CDNs to enable mCast while retaining user and data privacy. mCast is transparent to the clients and maintains the control of CDNs on user sessions. We developed a testbed and performed large scale evaluation and comparison. Results showed that mCast can improve the video quality received by clients and, for CDNs and ISPs in comparison to IP unicast, mCast can decrease link utilization by more than 50% and network losses to 0%

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    IEEE Transactions on Broadcasting Special Issue on: 5G for Broadband Multimedia Systems and Broadcasting

    Full text link
    [EN] The upcoming fifth-generation ( 5G ) of wireless communications technologies is expected to revolutionize society digital transformation thanks to its unprecedented wireless performance capabilities, providing speeds of several Gbps, very low latencies well below 5 ms, ultra-reliable transmissions with up to 99.999% success probability, while being able to handle a huge number of devices simultaneously connected to the network. The first version of the 3GPP specification (i.e., Release 15) has been recently completed and many 5G trials are under plan or carrying out worldwide, with the first commercial deployments happening in 2019."© 2019 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works."Gomez-Barquero, D.; Li, W.; Fuentes, M.; Xiong, J.; Araniti, G.; Akamine, C.; Wang, J. (2019). IEEE Transactions on Broadcasting Special Issue on: 5G for Broadband Multimedia Systems and Broadcasting. IEEE Transactions on Broadcasting. 65(2):351-355. https://doi.org/10.1109/TBC.2019.2914866S35135565

    Otimização de distribuição de conteúdos multimédia utilizando software-defined networking

    Get PDF
    The general use of Internet access and user equipments, such as smartphones, tablets and personal computers, is creating a new wave of video content consumption. In the past two decades, the Television broadcasting industry went through several evolutions and changes, evolving from analog to digital distribution, standard definition to high definition TV-channels, form the IPTV method of distribution to the latest set of technologies in content distribution, OTT. The IPTV technology introduced features that changed the passive role of the client to an active one, revolutionizing the way users consume TV content. Thus, the clients’ habits started to shape the services offered, leading to an anywhere and anytime offer of video content. OTT video delivery is a reflection of those habits, meeting the users’ desire, introducing several benefits discussed in this work over the previous technologies. However, the OTT type of delivery poses several challenges in terms of scalability and threatens the Telecommunications Operators business model, because OTT companies use the Telcos infrastructure for free. Consequently, Telecommunications Operators must prepare their infrastructure for future demand while offering new services to stay competitive. This dissertation aims to contribute with insights on what infrastructure changes a Telecommunications Operator must perform with a proposed bandwidth forecasting model. The results obtained from the forecast model paved the way to the proposed video content delivery method, which aims to improve users’ perceived Quality-of-Experience while optimizing load balancing decisions. The overall results show an improvement of users’ experience using the proposed method.A generalização do acesso à Internet e equipamentos pessoais como smartphones, tablets e computadores pessoais, está a criar uma nova onda de consumo de conteúdos multimedia. Nas ultimas duas décadas, a indústria de transmissão de Televisão atravessou várias evoluções e alterações, evoluindo da distribuição analógica para a digital, de canais de Televisão de definição padrão para alta definição, do método de distribuição IPTV, até ao último conjunto de tecnologias na distribuição de conteúdos, OTT. A tecnologia IPTV introduziu novas funcionalidades que mudaram o papel passivo do cliente para um papel activo, revolucionando a forma como os utilizadores consumem conteúdos televisivos. Assim, os hábitos dos clientes começaram a moldar os serviços oferecidos, levando à oferta de consumo de conteúdos em qualquer lugar e em qualquer altura. A entrega de vídeo OTT é um reflexo destes hábitos, indo ao encontro dos desejos dos utilizadores, que introduz inúmeras vantagens sobre outras tecnologias discutidas neste trabalho. No entanto, a entrega de conteúdos OTT cria diversos problemas de escalabilidade e ameaça o modelo de negócio das Operadoras de Telecomunicações, porque os fornecedores de serviço OTT usam a infraestrutura das mesmas sem quaisquer custos. Consequentemente, os Operadores de Telecomunicações devem preparar a sua infraestrutura para o consumo futuro ao mesmo tempo que oferecem novos serviços para se manterem competitivos. Esta dissertação visa contribuir com conhecimento sobre quais alterações uma Operadora de Telecomunicações deve executar com o modelo de previsão de largura de banda proposto. Os resultados obtidos abriram caminho para o método de entrega de conteúdos multimedia proposto, que visa ao melhoramento da qualidade de experiência do utilizador ao mesmo tempo que se optimiza o processo de balanceamento de carga. No geral os testes confirmam uma melhoria na qualidade de experiência do utilizador usando o método proposto.Mestrado em Engenharia de Computadores e Telemátic

    Survey of Transportation of Adaptive Multimedia Streaming service in Internet

    Full text link
    [DE] World Wide Web is the greatest boon towards the technological advancement of modern era. Using the benefits of Internet globally, anywhere and anytime, users can avail the benefits of accessing live and on demand video services. The streaming media systems such as YouTube, Netflix, and Apple Music are reining the multimedia world with frequent popularity among users. A key concern of quality perceived for video streaming applications over Internet is the Quality of Experience (QoE) that users go through. Due to changing network conditions, bit rate and initial delay and the multimedia file freezes or provide poor video quality to the end users, researchers across industry and academia are explored HTTP Adaptive Streaming (HAS), which split the video content into multiple segments and offer the clients at varying qualities. The video player at the client side plays a vital role in buffer management and choosing the appropriate bit rate for each such segment of video to be transmitted. A higher bit rate transmitted video pauses in between whereas, a lower bit rate video lacks in quality, requiring a tradeoff between them. The need of the hour was to adaptively varying the bit rate and video quality to match the transmission media conditions. Further, The main aim of this paper is to give an overview on the state of the art HAS techniques across multimedia and networking domains. A detailed survey was conducted to analyze challenges and solutions in adaptive streaming algorithms, QoE, network protocols, buffering and etc. It also focuses on various challenges on QoE influence factors in a fluctuating network condition, which are often ignored in present HAS methodologies. Furthermore, this survey will enable network and multimedia researchers a fair amount of understanding about the latest happenings of adaptive streaming and the necessary improvements that can be incorporated in future developments.Abdullah, MTA.; Lloret, J.; Canovas Solbes, A.; García-García, L. (2017). Survey of Transportation of Adaptive Multimedia Streaming service in Internet. Network Protocols and Algorithms. 9(1-2):85-125. doi:10.5296/npa.v9i1-2.12412S8512591-

    Multi-layer virtual transport network design and management

    Full text link
    Nowadays there is an increasing need for a general paradigm that can simplify network management and further enable network innovations. Software Defined Networking (SDN) is an efficient way to make the network programmable and reduce management complexity, however it is plagued with limitations inherited from the legacy Internet (TCP/IP) architecture. On the other hand, service overlay networks and virtual networks are widely used to overcome deficiencies of the Internet. However, most overlay/virtual networks are single-layered and lack dynamic scope management. Furthermore, how to solve the joint problem of designing and mapping the overlay/virtual network requests for better application and network performance remains an understudied area. In this thesis, in response to limitations of current SDN management solutions and of the traditional single-layer overlay/virtual network design, we propose a recursive approach to enterprise network management, where network management is done through managing various Virtual Transport Networks (VTNs) over different scopes (i.e., regions of operation). Different from the traditional overlay/virtual network model which mainly focuses on routing/tunneling, our VTN approach provides communication service with explicit Quality-of-Service (QoS) support for applications via transport flows, i.e., it involves all mechanisms (e.g., addressing, routing, error and flow control, resource allocation) needed to meet application requirements. Our approach inherently provides a multi-layer solution for overlay/virtual network design. The contributions of this thesis are threefold: (1) we propose a novel VTN-based management approach to enterprise network management; (2) we develop a framework for multi-layer VTN design and instantiate it to meet specific application and network goals; and (3) we design and prototype a VTN-based management architecture. Our simulation and experimental results demonstrate the flexibility of our VTN-based management approach and its performance advantages

    Software defined networking for radio telescopes: a case study on the applicability of SDN for MeerKAT

    Get PDF
    Scientific instruments like radio telescopes depend on high-performance networks for internal data exchange. The high bandwidth data exchange between the components of a radio telescope makes use of multicast networking. Complex multicast networks are hard to maintain and grow, and specific installations require modified network switches. This study evaluates Software Defined Networking (SDN) for use in the MeerKAT radio telescope to alleviate the management complexity and allow for a vendor-neutral implementation. The purpose of this dissertation is to verify that an SDN multicast network can produce suitable paths for data flow through the network and to see if such an implementation is easier to maintain and grow. There is little literature regarding SDN for radio telescope networks; however, there is considerable work where different aspects of SDN are discussed and demonstrated for video streaming. SDN with multicast for video streaming, although simpler, forms the background research. Considerable work was put into understanding and documenting the different aspects of a radio telescope affecting the data network. The telescope network controller generates the OpenFlow rules required by the SDN controller and is a new concept introduced in this work. The telescope network controller is fitted with two placement algorithms to demonstrate its flexibility. Both algorithms are suitable for the expected workload, but they produce very different traffic patterns. The two algorithms are not compared to one another, they were created to demonstrate the ease of adding domain specific knowledge to an SDN. The telescope network controller makes it easy to introduce and use new flow placement algorithms, thus making traffic engineering feasible for the radio telescope. Complex multicast networks are easier to maintain and grow with SDN. SDN allows customised packet forwarding rules typically unattainable with standard routing and other standard network protocols and implementations. A radio telescope with a software-defined data network is resilient, easier to maintain, vendor-neutral, and possesses advanced traffic engineering mechanisms
    corecore