491 research outputs found

    Analyzing and Enhancing Routing Protocols for Friend-to-Friend Overlays

    Get PDF
    The threat of surveillance by governmental and industrial parties is more eminent than ever. As communication moves into the digital domain, the advances in automatic assessment and interpretation of enormous amounts of data enable tracking of millions of people, recording and monitoring their private life with an unprecedented accurateness. The knowledge of such an all-encompassing loss of privacy affects the behavior of individuals, inducing various degrees of (self-)censorship and anxiety. Furthermore, the monopoly of a few large-scale organizations on digital communication enables global censorship and manipulation of public opinion. Thus, the current situation undermines the freedom of speech to a detrimental degree and threatens the foundations of modern society. Anonymous and censorship-resistant communication systems are hence of utmost importance to circumvent constant surveillance. However, existing systems are highly vulnerable to infiltration and sabotage. In particular, Sybil attacks, i.e., powerful parties inserting a large number of fake identities into the system, enable malicious parties to observe and possibly manipulate a large fraction of the communication within the system. Friend-to-friend (F2F) overlays, which restrict direct communication to parties sharing a real-world trust relationship, are a promising countermeasure to Sybil attacks, since the requirement of establishing real-world trust increases the cost of infiltration drastically. Yet, existing F2F overlays suffer from a low performance, are vulnerable to denial-of-service attacks, or fail to provide anonymity. Our first contribution in this thesis is concerned with an in-depth analysis of the concepts underlying the design of state-of-the-art F2F overlays. In the course of this analysis, we first extend the existing evaluation methods considerably, hence providing tools for both our and future research in the area of F2F overlays and distributed systems in general. Based on the novel methodology, we prove that existing approaches are inherently unable to offer acceptable delays without either requiring exhaustive maintenance costs or enabling denial-of-service attacks and de-anonymization. Consequentially, our second contribution lies in the design and evaluation of a novel concept for F2F overlays based on insights of the prior in-depth analysis. Our previous analysis has revealed that greedy embeddings allow highly efficient communication in arbitrary connectivity-restricted overlays by addressing participants through coordinates and adapting these coordinates to the overlay structure. However, greedy embeddings in their original form reveal the identity of the communicating parties and fail to provide the necessary resilience in the presence of dynamic and possibly malicious users. Therefore, we present a privacy-preserving communication protocol for greedy embeddings based on anonymous return addresses rather than identifying node coordinates. Furthermore, we enhance the communication’s robustness and attack-resistance by using multiple parallel embeddings and alternative algorithms for message delivery. We show that our approach achieves a low communication complexity. By replacing the coordinates with anonymous addresses, we furthermore provably achieve anonymity in the form of plausible deniability against an internal local adversary. Complementary, our simulation study on real-world data indicates that our approach is highly efficient and effectively mitigates the impact of failures as well as powerful denial-of-service attacks. Our fundamental results open new possibilities for anonymous and censorship-resistant applications.Die Bedrohung der Überwachung durch staatliche oder kommerzielle Stellen ist ein drängendes Problem der modernen Gesellschaft. Heutzutage findet Kommunikation vermehrt über digitale Kanäle statt. Die so verfügbaren Daten über das Kommunikationsverhalten eines Großteils der Bevölkerung in Kombination mit den Möglichkeiten im Bereich der automatisierten Verarbeitung solcher Daten erlauben das großflächige Tracking von Millionen an Personen, deren Privatleben mit noch nie da gewesener Genauigkeit aufgezeichnet und beobachtet werden kann. Das Wissen über diese allumfassende Überwachung verändert das individuelle Verhalten und führt so zu (Selbst-)zensur sowie Ängsten. Des weiteren ermöglicht die Monopolstellung einiger weniger Internetkonzernen globale Zensur und Manipulation der öffentlichen Meinung. Deshalb stellt die momentane Situation eine drastische Einschränkung der Meinungsfreiheit dar und bedroht die Grundfesten der modernen Gesellschaft. Systeme zur anonymen und zensurresistenten Kommunikation sind daher von ungemeiner Wichtigkeit. Jedoch sind die momentanen System anfällig gegen Sabotage. Insbesondere ermöglichen es Sybil-Angriffe, bei denen ein Angreifer eine große Anzahl an gefälschten Teilnehmern in ein System einschleust und so einen großen Teil der Kommunikation kontrolliert, Kommunikation innerhalb eines solchen Systems zu beobachten und zu manipulieren. F2F Overlays dagegen erlauben nur direkte Kommunikation zwischen Teilnehmern, die eine Vertrauensbeziehung in der realen Welt teilen. Dadurch erschweren F2F Overlays das Eindringen von Angreifern in das System entscheidend und verringern so den Einfluss von Sybil-Angriffen. Allerdings leiden die existierenden F2F Overlays an geringer Leistungsfähigkeit, Anfälligkeit gegen Denial-of-Service Angriffe oder fehlender Anonymität. Der erste Beitrag dieser Arbeit liegt daher in der fokussierten Analyse der Konzepte, die in den momentanen F2F Overlays zum Einsatz kommen. Im Zuge dieser Arbeit erweitern wir zunächst die existierenden Evaluationsmethoden entscheidend und erarbeiten so Methoden, die Grundlagen für unsere sowie zukünftige Forschung in diesem Bereich bilden. Basierend auf diesen neuen Evaluationsmethoden zeigen wir, dass die existierenden Ansätze grundlegend nicht fähig sind, akzeptable Antwortzeiten bereitzustellen ohne im Zuge dessen enorme Instandhaltungskosten oder Anfälligkeiten gegen Angriffe in Kauf zu nehmen. Folglich besteht unser zweiter Beitrag in der Entwicklung und Evaluierung eines neuen Konzeptes für F2F Overlays, basierenden auf den Erkenntnissen der vorangehenden Analyse. Insbesondere ergab sich in der vorangehenden Evaluation, dass Greedy Embeddings hoch-effiziente Kommunikation erlauben indem sie Teilnehmer durch Koordinaten adressieren und diese an die Struktur des Overlays anpassen. Jedoch sind Greedy Embeddings in ihrer ursprünglichen Form nicht auf anonyme Kommunikation mit einer dynamischen Teilnehmermengen und potentiellen Angreifern ausgelegt. Daher präsentieren wir ein Privätssphäre-schützenden Kommunikationsprotokoll für F2F Overlays, in dem die identifizierenden Koordinaten durch anonyme Adressen ersetzt werden. Des weiteren erhöhen wir die Resistenz der Kommunikation durch den Einsatz mehrerer Embeddings und alternativer Algorithmen zum Finden von Routen. Wir beweisen, dass unser Ansatz eine geringe Kommunikationskomplexität im Bezug auf die eigentliche Kommunikation sowie die Instandhaltung des Embeddings aufweist. Ferner zeigt unsere Simulationstudie, dass der Ansatz effiziente Kommunikation mit kurzen Antwortszeiten und geringer Instandhaltungskosten erreicht sowie den Einfluss von Ausfälle und Angriffe erfolgreich abschwächt. Unsere grundlegenden Ergebnisse eröffnen neue Möglichkeiten in der Entwicklung anonymer und zensurresistenter Anwendungen

    Privacy-aware Publishing of Decentralized Access-Controlled Content

    Get PDF

    A connection management protocol for promoting cooperation in Peer-to-Peer networks

    Get PDF
    Cataloged from PDF version of article.The existence of a high degree of free riding in Peer-to-Peer (P2P) networks is an important threat that should be addressed while designing P2P protocols. In this paper we propose a connection-based solution that will help to reduce the free riding effects on a P2P network and discourage free riding. Our solution includes a novel P2P connection type and an adaptive connection management protocol that dynamically establishes and adapts a P2P network topology considering the contributions of peers. The aim of the protocol is to bring contributing peers closer to each other on the adapted topology and to push the free riders away from the contributors. In this way contribution is promoted and free riding is discouraged. Unlike some other proposals against free riding, our solution does not require any permanent identification of peers or a security infrastructure for maintaining a global reputation system. It is shown through simulation experiments that there is a significant improvement in performance for contributing peers in a network that applies our protocol. © 2007 Elsevier B.V. All rights reserved

    Social and economic value in emerging decentralized energy business models: A critical review

    Get PDF
    In recent years, numerous studies have explored the opportunities and challenges for emerging decentralized energy systems and business models. However, few studies have focussed specifically on the economic and social value associated with three emerging models: peer-to-peer energy trading (P2P), community self-consumption (CSC) and transactive energy (TE). This article presents the findings of a systematic literature review to address this gap. The paper makes two main contributions to the literature. Firstly, it offers a synthesis of research on the social and economic value of P2P, CSC and TE systems, concluding that there is evidence for a variety of sources of social value (including energy independence, local benefits, social relationships, environmental responsibility and participation and purpose) and economic value (including via self-consumption of renewable electricity, reduced electricity import costs, and improved electricity export prices). Secondly, it identifies factors and conditions necessary for the success of these models, which include willingness to participate, participant engagement with technology, and project engagement of households and communities, among other factors. Finally, it discusses conflicts and trade-offs in the value propositions of the models, how the three models differ from one another in terms of the value they aim to deliver and some of the open challenges that require further attention by researchers and practitioners

    When energy trading meets blockchain in electrical power system: The state of the art

    Get PDF
    With the rapid growth of renewable energy resources, energy trading has been shifting from the centralized manner to distributed manner. Blockchain, as a distributed public ledger technology, has been widely adopted in the design of new energy trading schemes. However, there are many challenging issues in blockchain-based energy trading, e.g., low efficiency, high transaction cost, and security and privacy issues. To tackle these challenges, many solutions have been proposed. In this survey, the blockchain-based energy trading in the electrical power system is thoroughly investigated. Firstly, the challenges in blockchain-based energy trading are identified and summarized. Then, the existing energy trading schemes are studied and classified into three categories based on their main focuses: energy transaction, consensus mechanism, and system optimization. Blockchain-based energy trading has been a popular research topic, new blockchain architectures, models and products are continually emerging to overcome the limitations of existing solutions, forming a virtuous circle. The internal combination of different blockchain types and the combination of blockchain with other technologies improve the blockchain-based energy trading system to better satisfy the practical requirements of modern power systems. However, there are still some problems to be solved, for example, the lack of regulatory system, environmental challenges and so on. In the future, we will strive for a better optimized structure and establish a comprehensive security assessment model for blockchain-based energy trading system.This research was funded by Beijing Natural Science Foundation (grant number 4182060).Scopu

    Bitcoin and Beyond: Exclusively Informational Money

    Get PDF

    Distributed Spatial Data Sharing: a new era in sharing spatial data

    Get PDF
    The advancements in information and communications technology, including the widespread adoption of GPS-based sensors, improvements in computational data processing, and satellite imagery, have resulted in new data sources, stakeholders, and methods of producing, using, and sharing spatial data. Daily, vast amounts of data are produced by individuals interacting with digital content and through automated and semi-automated sensors deployed across the environment. A growing portion of this information contains geographic information directly or indirectly embedded within it. The widespread use of automated smart sensors and an increased variety of georeferenced media resulted in new individual data collectors. This raises a new set of social concerns around individual geopricacy and data ownership. These changes require new approaches to managing, sharing, and processing geographic data. With the appearance of distributed data-sharing technologies, some of these challenges may be addressed. This can be achieved by moving from centralized control and ownership of the data to a more distributed system. In such a system, the individuals are responsible for gathering and controlling access and storing data. Stepping into the new area of distributed spatial data sharing needs preparations, including developing tools and algorithms to work with spatial data in this new environment efficiently. Peer-to-peer (P2P) networks have become very popular for storing and sharing information in a decentralized approach. However, these networks lack the methods to process spatio-temporal queries. During the first chapter of this research, we propose a new spatio-temporal multi-level tree structure, Distributed Spatio-Temporal Tree (DSTree), which aims to address this problem. DSTree is capable of performing a range of spatio-temporal queries. We also propose a framework that uses blockchain to share a DSTree on the distributed network, and each user can replicate, query, or update it. Next, we proposed a dynamic k-anonymity algorithm to address geoprivacy concerns in distributed platforms. Individual dynamic control of geoprivacy is one of the primary purposes of the proposed framework introduced in this research. Sharing data within and between organizations can be enhanced by greater trust and transparency offered by distributed or decentralized technologies. Rather than depending on a central authority to manage geographic data, a decentralized framework would provide a fine-grained and transparent sharing capability. Users can also control the precision of shared spatial data with others. They are not limited to third-party algorithms to decide their privacy level and are also not limited to the binary levels of location sharing. As mentioned earlier, individuals and communities can benefit from distributed spatial data sharing. During the last chapter of this work, we develop an image-sharing platform, aka harvester safety application, for the Kakisa indigenous community in northern Canada. During this project, we investigate the potential of using a Distributed Spatial Data sharing (DSDS) infrastructure for small-scale data-sharing needs in indigenous communities. We explored the potential use case and challenges and proposed a DSDS architecture to allow users in small communities to share and query their data using DSDS. Looking at the current availability of distributed tools, the sustainable development of such applications needs accessible technology. We need easy-to-use tools to use distributed technologies on community-scale SDS. In conclusion, distributed technology is in its early stages and requires easy-to-use tools/methods and algorithms to handle, share and query geographic information. Once developed, it will be possible to contrast DSDS against other data systems and thereby evaluate the practical benefit of such systems. A distributed data-sharing platform needs a standard framework to share data between different entities. Just like the first decades of the appearance of the web, these tools need regulations and standards. Such can benefit individuals and small communities in the current chaotic spatial data-sharing environment controlled by the central bodies
    corecore