21,136 research outputs found

    A Framework for Automatically Realizing Assembly Sequence Changes in a Virtual Manufacturing Environment

    Get PDF
    © 2016 The Authors. Global market pressures and the rapid evolution of technologies and materials force manufacturers to constantly design, develop and produce new and varied products to maintain a competitive edge. Although virtual design and engineering tools have been key to supporting this fast rate of change, there remains a lack of seamless integration between and within tools across the domains of product, process, and resource design-especially to accommodate change. This research examines how changes to designs within these three domains can be captured and evaluated within a component based engineering tool (vueOne, developed by the Automation Systems Group at the University of Warwick). This paper describes how and where data within these tools can be mapped to quickly evaluate change (where typically a tedious process of data entry is required) decreasing lead times and cost and increasing productivity. The approach is tested on a sub-assembly of a hydrogen fuel cell, where an assembly system is modelled and changes are made to the sequence which is translated through to control logic. Although full implementation has not yet been realized, the concept has the potential to radically change the way changes are made and the approach can be extended to supporting other change types provided the appropriate rules and mapping

    Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor

    Get PDF
    The increasing demand of customized production results in huge challenges to the traditional manufacturing systems. In order to allocate resources timely according to the production requirements and to reduce disturbances, a framework for the future intelligent shopfloor is proposed in this paper. The framework consists of three primary models, namely the model of smart machine agent, the self-organizing model, and the self-adaptive model. A cyber-physical system for manufacturing shopfloor based on the multiagent technology is developed to realize the above-mentioned function models. Gray relational analysis and the hierarchy conflict resolution methods were applied to achieve the self-organizing and self-adaptive capabilities, thereby improving the reconfigurability and responsiveness of the shopfloor. A prototype system is developed, which has the adequate flexibility and robustness to configure resources and to deal with disturbances effectively. This research provides a feasible method for designing an autonomous factory with exception-handling capabilities

    Utilizing the Human Rights Framework: Lessons Learned from the From Poverty to Opportunity Campaign: Realizing Human Rights in Illinois

    Get PDF
    In response to the growth and deepening of poverty in Illinois and the collateral human rights consequences, in December of 2006, Heartland Alliance for Human Needs & Human Rights initiated the "From Poverty to Opportunity Campaign: Realizing Human Rights in Illinois". Working in collaboration with a coalition of community members, advocates, organizers, faith-based institutions, and policy leaders, the campaign advocated state-wide for an improved response to the growing problem of poverty in Illinois. This paper documents some of the lessons Heartland Alliance has learned while using the human rights framework to build and advance a campaign to eliminate extreme poverty in Illinois

    The virtual playground: an educational virtual reality environment for evaluating interactivity and conceptual learning

    Get PDF
    The research presented in this paper aims at investigating user interaction in immersive virtual learning environments (VLEs), focusing on the role and the effect of interactivity on conceptual learning. The goal has been to examine if the learning of young users improves through interacting in (i.e. exploring, reacting to, and acting upon) an immersive virtual environment (VE) compared to non interactive or non-immersive environments. Empirical work was carried out with more than 55 primary school students between the ages of 8 and 12, in different between-group experiments: an exploratory study, a pilot study, and a large-scale experiment. The latter was conducted in a virtual environment designed to simulate a playground. In this ‘Virtual Playground’, each participant was asked to complete a set of tasks designed to address arithmetical ‘fractions’ problems. Three different conditions, two experimental virtual reality (VR) conditions and a non-VR condition, that varied the levels of activity and interactivity, were designed to evaluate how children accomplish the various tasks. Pre-tests, post-tests, interviews, video, audio, and log files were collected for each participant, and analyzed both quantitatively and qualitatively. This paper presents a selection of case studies extracted from the qualitative analysis, which illustrate the variety of approaches taken by children in the VEs in response to visual cues and system feedback. Results suggest that the fully interactive VE aided children in problem solving but did not provide as strong evidence of conceptual change as expected; rather, it was the passive VR environment, where activity was guided by a virtual robot, that seemed to support student reflection and recall, leading to indications of conceptual change

    Towards Digital Twin Implementation for Assessing Production Line Performance and Balancing

    Get PDF
    The optimization of production processes has always been one of the cornerstones for manufacturing companies, aimed to increase their productivity, minimizing the related costs. In the Industry 4.0 era, some innovative technologies, perceived as far away until a few years ago, have become reachable by everyone. The massive introduction of these technologies directly in the factories allows interconnecting the resources (machines and humans) and the entire production chain to be kept under control, thanks to the collection and the analyses of real production data, supporting the decision making process. This article aims to propose a methodological framework that, thanks to the use of Industrial Internet of Things—IoT devices, in particular the wearable sensors, and simulation tools, supports the analyses of production line performance parameters, by considering both experimental and numerical data, allowing a continuous monitoring of the line balancing and performance at varying of the production demand. A case study, regarding a manual task of a real manufacturing production line, is presented to demonstrate the applicability and the effectiveness of the proposed procedure

    Design and realization of a sputter deposition system for the \textit{in situ-} and \textit{in operando-}use in polarized neutron reflectometry experiments

    Full text link
    We report on the realization of a sputter deposition system for the in situ- and in operando-use in polarized neutron reflectometry experiments. Starting with the scientific requirements, which define the general design considerations, the external limitations and boundaries imposed by the available space at a neutron beamline and by the neutron and vacuum compatibility of the used materials, are assessed. The relevant aspects are then accounted for in the realization of our highly mobile deposition system, which was designed with a focus on a quick and simple installation and removability at the beamline. Apart from the general design, the in-vacuum components, the auxiliary equipment and the remote control via a computer, as well as relevant safety aspects are presented in detail.Comment: Submitted for publication in Nuclear Inst. and Methods in Physics Research, A. (1st revised version
    • 

    corecore