943 research outputs found

    Lattice-Based Group Signatures: Achieving Full Dynamicity (and Deniability) with Ease

    Full text link
    In this work, we provide the first lattice-based group signature that offers full dynamicity (i.e., users have the flexibility in joining and leaving the group), and thus, resolve a prominent open problem posed by previous works. Moreover, we achieve this non-trivial feat in a relatively simple manner. Starting with Libert et al.'s fully static construction (Eurocrypt 2016) - which is arguably the most efficient lattice-based group signature to date, we introduce simple-but-insightful tweaks that allow to upgrade it directly into the fully dynamic setting. More startlingly, our scheme even produces slightly shorter signatures than the former, thanks to an adaptation of a technique proposed by Ling et al. (PKC 2013), allowing to prove inequalities in zero-knowledge. Our design approach consists of upgrading Libert et al.'s static construction (EUROCRYPT 2016) - which is arguably the most efficient lattice-based group signature to date - into the fully dynamic setting. Somewhat surprisingly, our scheme produces slightly shorter signatures than the former, thanks to a new technique for proving inequality in zero-knowledge without relying on any inequality check. The scheme satisfies the strong security requirements of Bootle et al.'s model (ACNS 2016), under the Short Integer Solution (SIS) and the Learning With Errors (LWE) assumptions. Furthermore, we demonstrate how to equip the obtained group signature scheme with the deniability functionality in a simple way. This attractive functionality, put forward by Ishida et al. (CANS 2016), enables the tracing authority to provide an evidence that a given user is not the owner of a signature in question. In the process, we design a zero-knowledge protocol for proving that a given LWE ciphertext does not decrypt to a particular message

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    The Random Oracle Methodology, Revisited

    Get PDF
    We take a critical look at the relationship between the security of cryptographic schemes in the Random Oracle Model, and the security of the schemes that result from implementing the random oracle by so called "cryptographic hash functions". The main result of this paper is a negative one: There exist signature and encryption schemes that are secure in the Random Oracle Model, but for which any implementation of the random oracle results in insecure schemes. In the process of devising the above schemes, we consider possible definitions for the notion of a "good implementation" of a random oracle, pointing out limitations and challenges.Comment: 31 page

    Short Group Signatures via Structure-Preserving Signatures: Standard Model Security from Simple Assumptions

    Get PDF
    International audienceGroup signatures are a central cryptographic primitive which allows users to sign messages while hiding their identity within a crowd of group members. In the standard model (without the random oracle idealization), the most efficient constructions rely on the Groth-Sahai proof systems (Euro-crypt'08). The structure-preserving signatures of Abe et al. (Asiacrypt'12) make it possible to design group signatures based on well-established, constant-size number theoretic assumptions (a.k.a. " simple assumptions ") like the Symmetric eXternal Diffie-Hellman or Decision Linear assumptions. While much more efficient than group signatures built on general assumptions, these constructions incur a significant overhead w.r.t. constructions secure in the idealized random oracle model. Indeed, the best known solution based on simple assumptions requires 2.8 kB per signature for currently recommended parameters. Reducing this size and presenting techniques for shorter signatures are thus natural questions. In this paper, our first contribution is to significantly reduce this overhead. Namely, we obtain the first fully anonymous group signatures based on simple assumptions with signatures shorter than 2 kB at the 128-bit security level. In dynamic (resp. static) groups, our signature length drops to 1.8 kB (resp. 1 kB). This improvement is enabled by two technical tools. As a result of independent interest, we first construct a new structure-preserving signature based on simple assumptions which shortens the best previous scheme by 25%. Our second tool is a new method for attaining anonymity in the strongest sense using a new CCA2-secure encryption scheme which is simultaneously a Groth-Sahai commitment
    • …
    corecore