113 research outputs found

    Unbounded Regions of High-Order Voronoi Diagrams of Lines and Segments in Higher Dimensions

    Get PDF
    We study the behavior at infinity of the farthest and the higher-order Voronoi diagram of n line segments or lines in a d-dimensional Euclidean space. The unbounded parts of these diagrams can be encoded by a Gaussian map on the sphere of directions S^(d-1). We show that the combinatorial complexity of the Gaussian map for the order-k Voronoi diagram of n line segments or lines is O(min{k,n-k} n^(d-1)), which is tight for n-k = O(1). All the d-dimensional cells of the farthest Voronoi diagram are unbounded, its (d-1)-skeleton is connected, and it does not have tunnels. A d-cell of the Voronoi diagram is called a tunnel if the set of its unbounded directions, represented as points on its Gaussian map, is not connected. In a three-dimensional space, the farthest Voronoi diagram of lines has exactly n^2-n three-dimensional cells, when n >= 2. The Gaussian map of the farthest Voronoi diagram of line segments or lines can be constructed in O(n^(d-1) alpha(n)) time, while if d=3, the time drops to worst-case optimal O(n^2)

    Geometric Algorithms for Minimal Enclosing Disks in Strictly Convex Normed Planes

    Get PDF
    With the geometric background provided by Alonso, Martini, and Spirovaon the location of circumcenters of triangles in normed planes, we show the validity of the Elzinga--Hearn algorithm and the Shamos--Hoey algorithm for solving the minimal enclosing disk problem in strictly convex normed planes

    Faster Approximate Diameter and Distance Oracles in Planar Graphs

    Get PDF
    We present an algorithm that computes a (1+varepsilon)-approximation of the diameter of a weighted, undirected planar graph of n vertices with non-negative edge lengths in O(nlog n(log n + (1/varepsilon)^5)) expected time, improving upon the O(n((1/varepsilon)^4 log^4(n) + 2^{O(1/varepsilon)}))-time algorithm of Weimann and Yuster [ICALP 2013]. Our algorithm makes two improvements over that result: first and foremost, it replaces the exponential dependency on 1/varepsilon with a polynomial one, by adapting and specializing Cabello\u27s recent abstract-Voronoi-diagram-based technique [SODA 2017] for approximation purposes; second, it shaves off two logarithmic factors by choosing a better sequence of error parameters during recursion. Moreover, using similar techniques, we improve the (1+varepsilon)-approximate distance oracle of Gu and Xu [ISAAC 2015] by first replacing the exponential dependency on 1/varepsilon on the preprocessing time and space with a polynomial one and second removing a logarithmic factor from the preprocessing time

    On the hausdorff and other cluster Voronoi diagrams

    Get PDF
    The Voronoi diagram is a fundamental geometric structure that encodes proximity information. Given a set of geometric objects, called sites, their Voronoi diagram is a subdivision of the underlying space into maximal regions, such that all points within one region have the same nearest site. Problems in diverse application domains (such as VLSI CAD, robotics, facility location, etc.) demand various generalizations of this simple concept. While many generalized Voronoi diagrams have been well studied, many others still have unsettled questions. An example of the latter are cluster Voronoi diagrams, whose sites are sets (clusters) of objects rather than individual objects. In this dissertation we study certain cluster Voronoi diagrams from the perspective of their construction algorithms and algorithmic applications. Our main focus is the Hausdorff Voronoi diagram; we also study the farthest-segment Voronoi diagram, as well as certain special cases of the farthest-color Voronoi diagram. We establish a connection between cluster Voronoi diagrams and the stabbing circle problem for segments in the plane. Our results are as follows. (1) We investigate the randomized incremental construction of the Hausdorff Voronoi diagram. We consider separately the case of non-crossing clusters, when the combinatorial complexity of the diagram is O(n) where n is the total number of points in all clusters. For this case, we present two construction algorithms that require O(n log2 n) expected time. For the general case of arbitrary clusters, we present an algorithm that requires O((m + n log n) log n) expected time and O(m + n log n) expected space, where m is a parameter reflecting the number of crossings between clusters' convex hulls. (2) We present an O(n) time algorithm to construct the farthest-segment Voronoi diagram of n segments, after the sequence of its faces at infinity is known. This augments the well-known linear-time framework for Voronoi diagram of points in convex position, with the ability to handle disconnected Voronoi regions. (3) We establish a connection between the cluster Voronoi diagrams (the Hausdorff and the farthest-color Voronoi diagram) and the stabbing circle problem. This implies a new method to solve the latter problem. Our method results in a near-optimal O(n log2 n) time algorithm for a set of n parallel segments, and in an optimal O(n log n) time algorithm for a set of n segments satisfying some other special conditions. (4) We study the farthest-color Voronoi diagram in special cases considered by the stabbing circle problem. We prove O(n) bound for its combinatorial complexity and present an O(nlogn) time algorithm to construct it

    Defining Equitable Geographic Districts in Road Networks via Stable Matching

    Full text link
    We introduce a novel method for defining geographic districts in road networks using stable matching. In this approach, each geographic district is defined in terms of a center, which identifies a location of interest, such as a post office or polling place, and all other network vertices must be labeled with the center to which they are associated. We focus on defining geographic districts that are equitable, in that every district has the same number of vertices and the assignment is stable in terms of geographic distance. That is, there is no unassigned vertex-center pair such that both would prefer each other over their current assignments. We solve this problem using a version of the classic stable matching problem, called symmetric stable matching, in which the preferences of the elements in both sets obey a certain symmetry. In our case, we study a graph-based version of stable matching in which nodes are stably matched to a subset of nodes denoted as centers, prioritized by their shortest-path distances, so that each center is apportioned a certain number of nodes. We show that, for a planar graph or road network with nn nodes and kk centers, the problem can be solved in O(nnlogn)O(n\sqrt{n}\log n) time, which improves upon the O(nk)O(nk) runtime of using the classic Gale-Shapley stable matching algorithm when kk is large. Finally, we provide experimental results on road networks for these algorithms and a heuristic algorithm that performs better than the Gale-Shapley algorithm for any range of values of kk.Comment: 9 pages, 4 figures, to appear in 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL 2017) November 7-10, 2017, Redondo Beach, California, US

    Two Algorithms for the Sum of Diameters Problem

    Get PDF

    Two Algorithms for the Sum of Diameters Problem

    Get PDF
    corecore