19,794 research outputs found

    An intrinsic Hamiltonian formulation of the dynamics of LC-circuits

    Get PDF
    First, the dynamics of LC-circuits are formulated as a Hamiltonian system defined with respect to a Poisson bracket which may be degenerate, i.e., nonsymplectic. This Poisson bracket is deduced from the network graph of the circuit and captures the dynamic invariants due to Kirchhoff's laws. Second, the antisymmetric relations defining the Poisson bracket are realized as a physical network using the gyrator element and partially dualizing the network graph constraints. From the network realization of the Poisson bracket, the reduced standard Hamiltonian system as well as the realization of the embedding standard Hamiltonian system are deduce

    Multiport Impedance Quantization

    Get PDF
    With the increase of complexity and coherence of superconducting systems made using the principles of circuit quantum electrodynamics, more accurate methods are needed for the characterization, analysis and optimization of these quantum processors. Here we introduce a new method of modelling that can be applied to superconducting structures involving multiple Josephson junctions, high-Q superconducting cavities, external ports, and voltage sources. Our technique, an extension of our previous work on single-port structures [1], permits the derivation of system Hamiltonians that are capable of representing every feature of the physical system over a wide frequency band and the computation of T1 times for qubits. We begin with a black box model of the linear and passive part of the system. Its response is given by its multiport impedance function Zsim(w), which can be obtained using a finite-element electormagnetics simulator. The ports of this black box are defined by the terminal pairs of Josephson junctions, voltage sources, and 50 Ohm connectors to high-frequency lines. We fit Zsim(w) to a positive-real (PR) multiport impedance matrix Z(s), a function of the complex Laplace variable s. We then use state-space techniques to synthesize a finite electric circuit admitting exactly the same impedance Z(s) across its ports; the PR property ensures the existence of this finite physical circuit. We compare the performance of state-space algorithms to classical frequency domain methods, justifying their superiority in numerical stability. The Hamiltonian of the multiport model circuit is obtained by using existing lumped element circuit quantization formalisms [2, 3]. Due to the presence of ideal transformers in the model circuit, these quantization methods must be extended, requiring the introduction of an extension of the Kirchhoff voltage and current laws

    Slider-pinning Rigidity: a Maxwell-Laman-type Theorem

    Get PDF
    We define and study slider-pinning rigidity, giving a complete combinatorial characterization. This is done via direction-slider networks, which are a generalization of Whiteley's direction networks.Comment: Accepted, to appear in Discrete and Computational Geometr

    Loop Equations as a Generalized Virasoro Constraints

    Full text link
    The loop equations in the U(N)U(N) lattice gauge theory are represented in the form of constraints imposed on a generating functional for the Wilson loop correlators. These constraints form a closed algebra with respect to commutation. This algebra generalizes the Virasoro one, which is known to appear in one-matrix models in the same way. The realization of this algebra in terms of the infinitesimal changes of generators of the loop space is given. The representations on the tensor fields on the loop space, generalizing the integer spin conformal fields, are constructed. The structure constants of the algebra under consideration being independent of the coupling constants, almost all the results are valid in the continuum.Comment: 7 pages, LaTex (3 LaTex figures), SMI-94-

    The standard model at low energies

    Full text link
    The hadronic sector of the standard model at low energies is described by a non--decoupling effective field theory, chiral perturbation theory. An introduction is given to the construction of effective chiral Lagrangians, both in the purely mesonic sector and with inclusion of baryons. The connection between the relativistic formulation and the heavy baryon approach to chiral perturbation theory with baryons is reviewed.Comment: Lectures given at the 6th Indian-Summer School on Intermediate Energy Physics, Prague, Aug. 1993, Latex, 26 pages (with a4.sty), UWThPh-1993-3

    Naturalness from runaways in direct mediation

    Full text link
    Postulating that the NMSSM singlet is a meson of a microscopic confining theory opens up new model-building possibilities. Based on this, we construct calculable models of direct mediation that solve the mu/Bmu problem and simultaneously lead to realistic phenomenology. The singlet that couples to the Higgs fields develops a runaway produced by soft interactions, then stabilized by a small superpotential perturbation. The mechanism is first realized in an O'Raifeartaigh model of direct gauge mediation with metastable supersymmetry breaking. Focusing then on the microscopic theory, we argue that super QCD with massless and massive flavors in the free magnetic phase gives rise to this dynamics in the infrared. A deformation of the SQCD superpotential leads to large spontaneous R-symmetry breaking, gaugino masses naturally at the scale of the Higgs mass parameters, and absence of CP violating phases.Comment: 31 pages. Version 2: Reference added, minor change

    Three-dimensional simplicial gravity and combinatorics of group presentations

    Get PDF
    We demonstrate how some problems arising in simplicial quantum gravity can be successfully addressed within the framework of combinatorial group theory. In particular, we argue that the number of simplicial 3-manifolds having a fixed homology type grows exponentially with the number of tetrahedra they are made of. We propose a model of 3D gravity interacting with scalar fermions, some restriction of which gives the 2-dimensional self-avoiding-loop-gas matrix model. We propose a qualitative picture of the phase structure of 3D simplicial gravity compatible with the numerical experiments and available analytical results.Comment: 24 page
    corecore