939 research outputs found

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    34th Midwest Symposium on Circuits and Systems-Final Program

    Get PDF
    Organized by the Naval Postgraduate School Monterey California. Cosponsored by the IEEE Circuits and Systems Society. Symposium Organizing Committee: General Chairman-Sherif Michael, Technical Program-Roberto Cristi, Publications-Michael Soderstrand, Special Sessions- Charles W. Therrien, Publicity: Jeffrey Burl, Finance: Ralph Hippenstiel, and Local Arrangements: Barbara Cristi

    Digital Filter Design Using Improved Teaching-Learning-Based Optimization

    Get PDF
    Digital filters are an important part of digital signal processing systems. Digital filters are divided into finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital filters according to the length of their impulse responses. An FIR digital filter is easier to implement than an IIR digital filter because of its linear phase and stability properties. In terms of the stability of an IIR digital filter, the poles generated in the denominator are subject to stability constraints. In addition, a digital filter can be categorized as one-dimensional or multi-dimensional digital filters according to the dimensions of the signal to be processed. However, for the design of IIR digital filters, traditional design methods have the disadvantages of easy to fall into a local optimum and slow convergence. The Teaching-Learning-Based optimization (TLBO) algorithm has been proven beneficial in a wide range of engineering applications. To this end, this dissertation focusses on using TLBO and its improved algorithms to design five types of digital filters, which include linear phase FIR digital filters, multiobjective general FIR digital filters, multiobjective IIR digital filters, two-dimensional (2-D) linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters. Among them, linear phase FIR digital filters, 2-D linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters use single-objective type of TLBO algorithms to optimize; multiobjective general FIR digital filters use multiobjective non-dominated TLBO (MOTLBO) algorithm to optimize; and multiobjective IIR digital filters use MOTLBO with Euclidean distance to optimize. The design results of the five types of filter designs are compared to those obtained by other state-of-the-art design methods. In this dissertation, two major improvements are proposed to enhance the performance of the standard TLBO algorithm. The first improvement is to apply a gradient-based learning to replace the TLBO learner phase to reduce approximation error(s) and CPU time without sacrificing design accuracy for linear phase FIR digital filter design. The second improvement is to incorporate Manhattan distance to simplify the procedure of the multiobjective non-dominated TLBO (MOTLBO) algorithm for general FIR digital filter design. The design results obtained by the two improvements have demonstrated their efficiency and effectiveness

    On the design and implementation of FIR and IIR digital filters with variable frequency characteristics

    Get PDF
    This paper studies the design and implementation of finite-impulse response (FIR) and infinite-impulse response (IIR) variable digital filters (VDFs), whose frequency characteristics can be controlled continuously by some control or tuning parameters. A least squares (LS) approach is proposed for the design of FIR VDFs by expressing the impulse response of the filter as a linear combination of basis functions. It is shown that the optimal LS solution can be obtained by solving a system of linear equations. By choosing the basis functions as piecewise polynomials, VDFs with larger tuning range than that of ordinary polynomial based approach results. The proposed VDF can be efficiently implemented using the familiar Farrow structure. Making use of the FIR VDF so obtained, an Eigensystem Realization Algorithm (ERA)-based model reduction technique is proposed to approximate the FIR VDF by a stable IIR VDF with lower system order. The advantages of the model reduction approach are: 1) it is computational simple which only requires the computation of the singular value decomposition of a Hankel matrix; 2) the IIR VDF obtained is guaranteed to be stable; and 3) the frequency response such as the phase response of the FIR prototype is well preserved. Apart from the above advantages, the proposed IIR VDF does not suffer from undesirable transient response during parameter tuning found in other approaches based on direct tuning of filter parameters. For frequency selective VDFs, about 40% of the multiplications can be saved using the IIR VDFs. The implementation of the proposed FIR VDF using sum-of-powers-of-two (SOPOT) coefficient and the multiplier block (MB) technique are also studied. Results show that about two-third of the additions in implementing the multiplication of the SOPOT coefficients can be saved using the multiplier block, which leads to significant savings in hardware complexity.link_to_subscribed_fulltex

    An Efficient Design of 2-D Digital Filters Using Singular Value Decomposition and Genetic Algorithm with Canonical Signed Digit (CSD) Coefficients

    Get PDF
    In this thesis, the design of 2-D filters by SVD is proposed. This technique reduces the complexity of the designed 2-D digital filters by decomposing it into a set of 1-D digital filters in zl and z2 connected in cascade. The design by SVD can be improved by varying the order of 1-D digital filters in each section based on their corresponding singular values. It is shown that by assigning higher order filters to the sections with greater singular values (SVs), and lower order filters to the sections with lower SVs, a sizable reduction in the total number of required multiplications is achieved. A Genetic Algorithm (GA) is used to design each of the 1-D filters instead of classical optimization. Canonical signed digit system is used to represent filters\u27 coefficients. CSD helps to improve the efficiency of multiplications and thus increase the throughput rate. Examples are provided to demonstrate the effectiveness and usefulness of the proposed technique

    Multidimensional Wave Digital Filters and Wavelets (Mehrdimensionale Wellendigitalfilter und Wavelets)

    Full text link
    Das Kernziel dieser Dissertation ist der Entwurf von orthogonalen, mehrdimensionalen Wellendigitalfiltern für nichtseparierbare Abtastmatritzen (z.B. Quincunx-, Hexagonal-, BCCS-Matrix). Damit der Leser einen einfacheren Einstieg in den Filterentwurf hat, sind einige Grundlagen elektrischer Netzwerke und Filter vom analogen als auch vom digitalen Typ in Kapitel 2 angegeben. Wichtiges Beiwerk, welches digitale Filter mit der Wavelettransformation verknüpft, ist zusammengefaßt. Es wird weiterführende Literatur angegeben, die diesen Stoff ausführlicher behandelt. Weiterhin werden wichtige Abtastsätze präsentiert und ein angegebener Vergleich über die minimale Abtastrate zeigt einen interessanten Aspekt. Kapitel 3 zeigt Verbindungen von Wellendigitalfiltern zu ihren analogen Referenzfiltern. Desweiteren wird gezeigt, wie man eine perfekte Rekonstruktion mit Filterbänken erreicht ohne eine spektrale Faktorisierung durchführen zu müssen. Bekannte Wavelets, wie z.B. Meyer Wavelets, Sinc-Wavelet (Littlewood-Paley Wavelet), Haar Wavelet, Daubechies Wavelets und Butterworth Wavelets, sind in Kapitel 4 präsentiert. Weiterhin werden bekannte Filter gezeigt, die (sofern einige Einschränkungen eingehalten werden) benutzt werden können um neue orthonormale Wavelets, nämlich Cosinus-Rolloff Wavelets und Chebyshev Wavelets zu generieren. Es wird auch ein Filter präsentiert mit welchem eine Verschiebung der Abtastwerte um einen beliebigen reellen Wert effizient erfolgen kann. In den Kapiteln 5, 6 und 7 werden Entwurfsmethoden für mehrdimensionale Filter angegeben mit denen nichtseparierbare, orthogonale Wavelets (zwei- und dreidimensional) erzeugt werden können

    Design and Realization of Fully-digital Microwave and Mm-wave Multi-beam Arrays with FPGA/RF-SOC Signal Processing

    Get PDF
    There has been a constant increase in data-traffic and device-connections in mobile wireless communications, which led the fifth generation (5G) implementations to exploit mm-wave bands at 24/28 GHz. The next-generation wireless access point (6G and beyond) will need to adopt large-scale transceiver arrays with a combination of multi-input-multi-output (MIMO) theory and fully digital multi-beam beamforming. The resulting high gain array factors will overcome the high path losses at mm-wave bands, and the simultaneous multi-beams will exploit the multi-directional channels due to multi-path effects and improve the signal-to-noise ratio. Such access points will be based on electronic systems which heavily depend on the integration of RF electronics with digital signal processing performed in Field programmable gate arrays (FPGA)/ RF-system-on-chip (SoC). This dissertation is directed towards the investigation and realization of fully-digital phased arrays that can produce wideband simultaneous multi-beams with FPGA or RF-SoC digital back-ends. The first proposed approach is a spatial bandpass (SBP) IIR filter-based beamformer, and is based on the concepts of space-time network resonance. A 2.4 GHz, 16-element array receiver, has been built for real-time experimental verification of this approach. The second and third approaches are respectively based on Discrete Fourier Transform (DFT) theory, and a lens plus focal planar array theory. Lens based approach is essentially an analog model of DFT. These two approaches are verified for a 28 GHz 800 MHz mm-wave implementation with RF-SoC as the digital back-end. It has been shown that for all proposed multibeam beamformer implementations, the measured beams are well aligned with those of the simulated. The proposed approaches differ in terms of their architectures, hardware complexity and costs, which will be discussed as this dissertation opens up. This dissertation also presents an application of multi-beam approaches for RF directional sensing applications to explore white spaces within the spatio-temporal spectral regions. A real-time directional sensing system is proposed to capture the white spaces within the 2.4 GHz Wi-Fi band. Further, this dissertation investigates the effect of electro-magnetic (EM) mutual coupling in antenna arrays on the real-time performance of fully-digital transceivers. Different algorithms are proposed to uncouple the mutual coupling in digital domain. The first one is based on finding the MC transfer function from the measured S-parameters of the antenna array and employing it in a Frost FIR filter in the beamforming backend. The second proposed method uses fast algorithms to realize the inverse of mutual coupling matrix via tridiagonal Toeplitz matrices having sparse factors. A 5.8 GHz 32-element array and 1-7 GHz 7-element tightly coupled dipole array (TCDA) have been employed to demonstrate the proof-of-concept of these algorithms
    corecore