2,474 research outputs found

    Complexity and Information: Measuring Emergence, Self-organization, and Homeostasis at Multiple Scales

    Full text link
    Concepts used in the scientific study of complex systems have become so widespread that their use and abuse has led to ambiguity and confusion in their meaning. In this paper we use information theory to provide abstract and concise measures of complexity, emergence, self-organization, and homeostasis. The purpose is to clarify the meaning of these concepts with the aid of the proposed formal measures. In a simplified version of the measures (focusing on the information produced by a system), emergence becomes the opposite of self-organization, while complexity represents their balance. Homeostasis can be seen as a measure of the stability of the system. We use computational experiments on random Boolean networks and elementary cellular automata to illustrate our measures at multiple scales.Comment: 42 pages, 11 figures, 2 table

    Local Causal States and Discrete Coherent Structures

    Get PDF
    Coherent structures form spontaneously in nonlinear spatiotemporal systems and are found at all spatial scales in natural phenomena from laboratory hydrodynamic flows and chemical reactions to ocean, atmosphere, and planetary climate dynamics. Phenomenologically, they appear as key components that organize the macroscopic behaviors in such systems. Despite a century of effort, they have eluded rigorous analysis and empirical prediction, with progress being made only recently. As a step in this, we present a formal theory of coherent structures in fully-discrete dynamical field theories. It builds on the notion of structure introduced by computational mechanics, generalizing it to a local spatiotemporal setting. The analysis' main tool employs the \localstates, which are used to uncover a system's hidden spatiotemporal symmetries and which identify coherent structures as spatially-localized deviations from those symmetries. The approach is behavior-driven in the sense that it does not rely on directly analyzing spatiotemporal equations of motion, rather it considers only the spatiotemporal fields a system generates. As such, it offers an unsupervised approach to discover and describe coherent structures. We illustrate the approach by analyzing coherent structures generated by elementary cellular automata, comparing the results with an earlier, dynamic-invariant-set approach that decomposes fields into domains, particles, and particle interactions.Comment: 27 pages, 10 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/dcs.ht

    Quantum Games and Programmable Quantum Systems

    Get PDF
    Attention to the very physical aspects of information characterizes the current research in quantum computation, quantum cryptography and quantum communication. In most of the cases quantum description of the system provides advantages over the classical approach. Game theory, the study of decision making in conflict situation has already been extended to the quantum domain. We would like to review the latest development in quantum game theory that is relevant to information processing. We will begin by illustrating the general idea of a quantum game and methods of gaining an advantage over "classical opponent". Then we review the most important game theoretical aspects of quantum information processing. On grounds of the discussed material, we reason about possible future development of quantum game theory and its impact on information processing and the emerging information society. The idea of quantum artificial intelligence is explained.

    Percolation games, probabilistic cellular automata, and the hard-core model

    Full text link
    Let each site of the square lattice Z2\mathbb{Z}^2 be independently assigned one of three states: a \textit{trap} with probability pp, a \textit{target} with probability qq, and \textit{open} with probability 1pq1-p-q, where 0<p+q<10<p+q<1. Consider the following game: a token starts at the origin, and two players take turns to move, where a move consists of moving the token from its current site xx to either x+(0,1)x+(0,1) or x+(1,0)x+(1,0). A player who moves the token to a trap loses the game immediately, while a player who moves the token to a target wins the game immediately. Is there positive probability that the game is \emph{drawn} with best play -- i.e.\ that neither player can force a win? This is equivalent to the question of ergodicity of a certain family of elementary one-dimensional probabilistic cellular automata (PCA). These automata have been studied in the contexts of enumeration of directed lattice animals, the golden-mean subshift, and the hard-core model, and their ergodicity has been noted as an open problem by several authors. We prove that these PCA are ergodic, and correspondingly that the game on Z2\mathbb{Z}^2 has no draws. On the other hand, we prove that certain analogous games \emph{do} exhibit draws for suitable parameter values on various directed graphs in higher dimensions, including an oriented version of the even sublattice of Zd\mathbb{Z}^d in all d3d\geq3. This is proved via a dimension reduction to a hard-core lattice gas in dimension d1d-1. We show that draws occur whenever the corresponding hard-core model has multiple Gibbs distributions. We conjecture that draws occur also on the standard oriented lattice Zd\mathbb{Z}^d for d3d\geq 3, but here our method encounters a fundamental obstacle.Comment: 35 page
    corecore