1,922 research outputs found

    Homogeneous and heterogeneous MPSoC architectures with network-on-chip connectivity for low-power and real-time multimedia signal processing

    Get PDF
    Two multiprocessor system-on-chip (MPSoC) architectures are proposed and compared in the paper with reference to audio and video processing applications. One architecture exploits a homogeneous topology; it consists of 8 identical tiles, each made of a 32-bit RISC core enhanced by a 64-bit DSP coprocessor with local memory. The other MPSoC architecture exploits a heterogeneous-tile topology with on-chip distributed memory resources; the tiles act as application specific processors supporting a different class of algorithms. In both architectures, the multiple tiles are interconnected by a network-on-chip (NoC) infrastructure, through network interfaces and routers, which allows parallel operations of the multiple tiles. The functional performances and the implementation complexity of the NoC-based MPSoC architectures are assessed by synthesis results in submicron CMOS technology. Among the large set of supported algorithms, two case studies are considered: the real-time implementation of an H.264/MPEG AVC video codec and of a low-distortion digital audio amplifier. The heterogeneous architecture ensures a higher power efficiency and a smaller area occupation and is more suited for low-power multimedia processing, such as in mobile devices. The homogeneous scheme allows for a higher flexibility and easier system scalability and is more suited for general-purpose DSP tasks in power-supplied devices

    FPGA Implementation of Higher Order FIR Filter

    Get PDF
    The digital Finite-Impulse-Response (FIR) filters are mainly employed in digital signal processing applications. The main components of digital FIR filters designed on FPGAs are the register bank to save the samples of signals, adder to implement sum operations and multiplier for multiplication of filter coefficients to signal samples. Although, design and implementation of digital FIR filters seem simple but the design bottleneck is multiplier block for speed, power consumption and FPGA chip area occupation. The multipliers are an integral part in FIR structures and these use a large part of the chip area. This limits the number of processing elements (PE) available on the chip to realize a higher order of filter. A model is developed in the Matlab/Simulink environment to investigate the performance of the desired higher order FIR filter. An equivalent FIR filter representation is designed by the Xilinx FIR Compiler by using the exported FIR filter coefficients. The Xilinx implementation flow is completed with the help of Xilinx ISE 14.5. It is observed how the use of higher order FIR filter impacts the resource utilization of the FPGA and it’s the maximum operating frequency

    FPGAs in Industrial Control Applications

    Get PDF
    The aim of this paper is to review the state-of-the-art of Field Programmable Gate Array (FPGA) technologies and their contribution to industrial control applications. Authors start by addressing various research fields which can exploit the advantages of FPGAs. The features of these devices are then presented, followed by their corresponding design tools. To illustrate the benefits of using FPGAs in the case of complex control applications, a sensorless motor controller has been treated. This controller is based on the Extended Kalman Filter. Its development has been made according to a dedicated design methodology, which is also discussed. The use of FPGAs to implement artificial intelligence-based industrial controllers is then briefly reviewed. The final section presents two short case studies of Neural Network control systems designs targeting FPGAs

    Real-Time Fault Detection and Diagnosis System for Analog and Mixed-Signal Circuits of Acousto-Magnetic EAS Devices

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The paper discusses fault diagnosis of the electronic circuit board, part of acousto-magnetic electronic article surveillance detection devices. The aim is that the end-user can run the fault diagnosis in real time using a portable FPGA-based platform so as to gain insight into the failures that have occurred.Peer reviewe

    In Car Audio

    Get PDF
    This chapter presents implementations of advanced in Car Audio Applications. The system is composed by three main different applications regarding the In Car listening and communication experience. Starting from a high level description of the algorithms, several implementations on different levels of hardware abstraction are presented, along with empirical results on both the design process undergone and the performance results achieved

    Comparison of Linear and Nonlinear Equalization for Ultra-High Capacity Spectral Superchannels

    Get PDF
    In ultra-high-speed (>400Gb/s per wavelength), high-spectral efficiency coherent optical communication systems using multi-carrier spectral superchannels, the maximum reach is severely limited due to linear and, foremost, nonlinear impairments. Hence, the implementation of advanced digital signal processing (DSP) techniques in optical transceivers is crucial for alleviating the impact of such impairments. However, the DSP performance improvement comes at the expense of increased cost and power consumption. Given that the computational complexity of the applied linear and nonlinear equalizers is the factor that determines the trade-off between the performance improvement and cost, in this study we provide an extended analysis on the computational complexity of various linear and nonlinear equalization approaches. First, we draw a complexity comparison between a conventional OFDM coherent receiver versus a filter-bank based OFDM receiver and it is shown that the latter provides significant complexity savings. Second, we present a comparison between the digital back-propagation split-step Fourier (DBP-SSF) method and the inverse Volterra series transfer function nonlinear equalizer (IVSTF-NLE) in terms of performance and computational complexity for a 32 Gbaud polarization multiplexed (PM)-16 quadrature amplitude modulation (QAM) OFDM superchannel

    Multiplierless CSD techniques for high performance FPGA implementation of digital filters.

    Get PDF
    I leverage FastCSD to develop a new, high performance iterative multiplierless structure based on a novel real-time CSD recoding, so that more zero partial products are introduced. Up to 66.7% zero partial products occur compared to 50% in the traditional modified Booth's recoding. Also, this structure reduces the non-zero partial products to a minimum. As a result, the number of arithmetic operations in the carry-save structure is reduced. Thus, an overall speed-up, as well as low-power consumption can be achieved. Furthermore, because the proposed structure involves real time CSD recoding and does not require a fixed value for the multiplier input to be known a priori, the proposed multiplier can be applied to implement digital filters with non-fixed filter coefficients, such as adaptive filters.My work is based on a dramatic new technique for converting between 2's complement and CSD number systems, and results in high-performance structures that are particularly effective for implementing adaptive systems in reconfigurable logic.My research focus is on two key ideas for improving DSP performance: (1) Develop new high performance, efficient shift-add techniques ("multiplierless") to implement the multiply-add operations without the need for a traditional multiplier structure. (2) There is a growing trend toward design prototyping and even production in FPGAs as opposed to dedicated DSP processors or ASICs; leverage this trend synergistically with the new multiplierless structures to improve performance.Implementation of digital signal processing (DSP) algorithms in hardware, such as field programmable gate arrays (FPGAs), requires a large number of multipliers. Fast, low area multiply-adds have become critical in modern commercial and military DSP applications. In many contemporary real-time DSP and multimedia applications, system performance is severely impacted by the limitations of currently available speed, energy efficiency, and area requirement of an onboard silicon multiplier.I also introduce a new multi-input Canonical Signed Digit (CSD) multiplier unit, which requires fewer shift/add/subtract operations and reduced CSD number conversion overhead compared to existing techniques. This results in reduced power consumption and area requirements in the hardware implementation of DSP algorithms. Furthermore, because all the products are produced simultaneously, the multiplication speed and thus the throughput are improved. The multi-input multiplier unit is applied to implement digital filters with non-fixed filter coefficients, such as adaptive filters. The implementation cost of these digital filters can be further reduced by limiting the wordlength of the input signal with little or no sacrifice to the filter performance, which is confirmed by my simulation results. The proposed multiplier unit can also be applied to other DSP algorithms, such as digital filter banks or matrix and vector multiplications.Finally, the tradeoff between filter order and coefficient length in the design and implementation of high-performance filters in Field Programmable Gate Arrays (FPGAs) is discussed. Non-minimum order FIR filters are designed for implementation using Canonical Signed Digit (CSD) multiplierless implementation techniques. By increasing the filter order, the length of the coefficients can be decreased without reducing the filter performance. Thus, an overall hardware savings can be achieved.Adaptive system implementations require real-time conversion of coefficients to Canonical Signed Digit (CSD) or similar representations to benefit from multiplierless techniques for implementing filters. Multiplierless approaches are used to reduce the hardware and increase the throughput. This dissertation introduces the first non-iterative hardware algorithm to convert 2's complement numbers to their CSD representations (FastCSD) using a fixed number of shift and logic operations. As a result, the power consumption and area requirements required for hardware implementation of DSP algorithms in which the coefficients are not known a priori can be greatly reduced. Because all CSD digits are produced simultaneously, the conversion speed and thus the throughput are improved when compared to overlap-and-scan techniques such as Booth's recoding

    Architectures for block Toeplitz systems

    Get PDF
    In this paper efficient VLSI architectures of highly concurrent algorithms for the solution of block linear systems with Toeplitz or near-to-Toeplitz entries are presented. The main features of the proposed scheme are the use of scalar only operations, multiplications/divisions and additions, and the local communication which enables the development of wavefront array architecture. Both the mean squared error and the total squared error formulations are described and a variety of implementations are given

    An Introduction to Digital Signal Processing

    Get PDF
    An Introduction to Digital Signal Processing aims at undergraduate students who have basic knowledge in C programming, Circuit Theory, Systems and Simulations, and Spectral Analysis. The book is focused on basic concepts of digital signal processing, MATLAB simulation and implementation on selected DSP hardware in which the candidate is introduced to the basic concepts first before embarking to the practical part which comes in the later chapters. Initially Digital Signal Processing evolved as a postgraduate course which slowly filtered into the undergraduate curriculum as a simplified version of the latter. The goal was to study DSP concepts and to provide a foundation for further research where new and more efficient concepts and algorithms can be developed. Though this was very useful it did not arm the student with all the necessary tools that many industries using DSP technology would require to develop applications. This book is an attempt to bridge the gap. It is focused on basic concepts of digital signal processing, MATLAB simulation and implementation on selected DSP hardware. The objective is to win the student to use a variety of development tools to develop applications. Contents• Introduction to Digital Signal processing.• The transform domain analysis: the Discrete-Time Fourier Transform• The transform domain analysis: the Discrete Fourier Transform• The transform domain analysis: the z-transform• Review of Analogue Filter• Digital filter design.• Digital Signal Processing Implementation Issues• Digital Signal Processing Hardware and Software• Examples of DSK Filter Implementatio

    Review: Recent Directions in ECG-FPGA Researches

    Get PDF
    لقد شهدت السنوات القليلة الماضية اهتماماً متزايداً نحو استخدام مصفوفة البوابات المنطقية القابلة للبرمجة FPGA في التطبيقات المختلفة. لقد أدى التقدم الحاصل في مرونة التعامل مع الموارد بالاضافة الى الزيادة في سرعة الاداء وانخفاض الثمن للـ FPGA وكذلك الاستهلاك القليل للطاقة الى هذا الاهتمام المتزايد بالـ FPGA. ان استخدام الـ FPGA في مجالات الطب والصحة يهدف بشكل عام الى استبدال اجهزة المراقبة الطبية كبيرة الحجم وغالية الثمن باخرى أصغر حجماً مع امكانية تصميمها لكي تكون اجهزة محمولة اعتماداً على مرونة التصميم التي يوفرها الـ FPGA. إنصب الاهتمام في العديد من البحوث الحالية على استخدام نظام FPGA لمعالجة الجوانب المتعلقة بإشارة تخطيط القلب وذلك لتوفير التحسينات في الاداء وزيادة السرعة بالاضافة الى أيجاد وإقتراح افكار جديدة لمثل هذه التطبيقات. ان هذا البحث يوفر نظرة عامة عن الاتجاهات الحالية في انظمة ECG-FPGA.The last few years witnessed an increased interest in utilizing field programmable gate array (FPGA) for a variety of applications. This utilizing derived mostly by the advances in the FPGA flexible resource configuration, increased speed, relatively low cost and low energy consumption. The introduction of FPGA in medicine and health care field aim generally to replace costly and usually bigger medical monitoring and diagnostic equipment with much smaller and possibly portable systems based on FPGA that make use of the design flexibility of FPGA. Many recent researches focus on FPGA systems to deal with the well-known yet very important electrocardiogram (ECG) signal aspects to provide acceleration and improvement in the performance as well as finding and proposing new ideas for such implementations. The recent directions in ECG-FPGA are introduced in this paper
    corecore