1,362 research outputs found

    Multiple domination models for placement of electric vehicle charging stations in road networks

    Get PDF
    Electric and hybrid vehicles play an increasing role in the road transport networks. Despite their advantages, they have a relatively limited cruising range in comparison to traditional diesel/petrol vehicles, and require significant battery charging time. We propose to model the facility location problem of the placement of charging stations in road networks as a multiple domination problem on reachability graphs. This model takes into consideration natural assumptions such as a threshold for remaining battery load, and provides some minimal choice for a travel direction to recharge the battery. Experimental evaluation and simulations for the proposed facility location model are presented in the case of real road networks corresponding to the cities of Boston and Dublin.Comment: 20 pages, 5 figures; Original version from March-April 201

    Probabilistic Fair Clustering

    Full text link
    In clustering problems, a central decision-maker is given a complete metric graph over vertices and must provide a clustering of vertices that minimizes some objective function. In fair clustering problems, vertices are endowed with a color (e.g., membership in a group), and the features of a valid clustering might also include the representation of colors in that clustering. Prior work in fair clustering assumes complete knowledge of group membership. In this paper, we generalize prior work by assuming imperfect knowledge of group membership through probabilistic assignments. We present clustering algorithms in this more general setting with approximation ratio guarantees. We also address the problem of "metric membership", where different groups have a notion of order and distance. Experiments are conducted using our proposed algorithms as well as baselines to validate our approach and also surface nuanced concerns when group membership is not known deterministically

    Selected Neighbor Degree Forest Realization

    Get PDF

    Local Tomography of Large Networks under the Low-Observability Regime

    Full text link
    This article studies the problem of reconstructing the topology of a network of interacting agents via observations of the state-evolution of the agents. We focus on the large-scale network setting with the additional constraint of partialpartial observations, where only a small fraction of the agents can be feasibly observed. The goal is to infer the underlying subnetwork of interactions and we refer to this problem as locallocal tomographytomography. In order to study the large-scale setting, we adopt a proper stochastic formulation where the unobserved part of the network is modeled as an Erd\"{o}s-R\'enyi random graph, while the observable subnetwork is left arbitrary. The main result of this work is establishing that, under this setting, local tomography is actually possible with high probability, provided that certain conditions on the network model are met (such as stability and symmetry of the network combination matrix). Remarkably, such conclusion is established under the lowlow-observabilityobservability regimeregime, where the cardinality of the observable subnetwork is fixed, while the size of the overall network scales to infinity.Comment: To appear in IEEE Transactions on Information Theor

    Optimal spatial transportation networks where link-costs are sublinear in link-capacity

    Full text link
    Consider designing a transportation network on nn vertices in the plane, with traffic demand uniform over all source-destination pairs. Suppose the cost of a link of length \ell and capacity cc scales as cβ\ell c^\beta for fixed 0<β<10<\beta<1. Under appropriate standardization, the cost of the minimum cost Gilbert network grows essentially as nα(β)n^{\alpha(\beta)}, where α(β)=1β2\alpha(\beta) = 1 - \frac{\beta}{2} on 0<β1/20 < \beta \leq {1/2} and α(β)=1/2+β2\alpha(\beta) = {1/2} + \frac{\beta}{2} on 1/2β<1{1/2} \leq \beta < 1. This quantity is an upper bound in the worst case (of vertex positions), and a lower bound under mild regularity assumptions. Essentially the same bounds hold if we constrain the network to be efficient in the sense that average route-length is only 1+o(1)1 + o(1) times average straight line length. The transition at β=1/2\beta = {1/2} corresponds to the dominant cost contribution changing from short links to long links. The upper bounds arise in the following type of hierarchical networks, which are therefore optimal in an order of magnitude sense. On the large scale, use a sparse Poisson line process to provide long-range links. On the medium scale, use hierachical routing on the square lattice. On the small scale, link vertices directly to medium-grid points. We discuss one of many possible variant models, in which links also have a designed maximum speed ss and the cost becomes cβsγ\ell c^\beta s^\gamma.Comment: 13 page

    Connectivity vs Capacity in Dense Ad Hoc Networks

    Get PDF
    We study the connectivity and capacity of finite area ad hoc wireless networks, with an increasing number of nodes (dense networks). We find that the properties of the network strongly depend on the shape of the attenuation function. For power law attenuation functions, connectivity scales, and the available rate per node is known to decrease like 1/sqrt(n). On the contrary, if the attenuation function does not have a singularity at the origin and is uniformly bounded, we obtain bounds on the percolation domain for large node densities, which show that either the network becomes disconnected, or the available rate per node decreases like 1/n

    Maximal stream and minimal cutset for first passage percolation through a domain of Rd\mathbb{R}^d

    Full text link
    We consider the standard first passage percolation model in the rescaled graph Zd/n\mathbb{Z}^d/n for d2d\geq2 and a domain Ω\Omega of boundary Γ\Gamma in Rd\mathbb{R}^d. Let Γ1\Gamma ^1 and Γ2\Gamma ^2 be two disjoint open subsets of Γ\Gamma, representing the parts of Γ\Gamma through which some water can enter and escape from Ω\Omega. A law of large numbers for the maximal flow from Γ1\Gamma ^1 to Γ2\Gamma ^2 in Ω\Omega is already known. In this paper we investigate the asymptotic behavior of a maximal stream and a minimal cutset. A maximal stream is a vector measure μnmax\vec{\mu}_n^{\max} that describes how the maximal amount of fluid can cross Ω\Omega. Under conditions on the regularity of the domain and on the law of the capacities of the edges, we prove that the sequence (μnmax)n1(\vec{\mu}_n^{\max})_{n\geq1} converges a.s. to the set of the solutions of a continuous deterministic problem of maximal stream in an anisotropic network. A minimal cutset can been seen as the boundary of a set EnminE_n^{\min} that separates Γ1\Gamma ^1 from Γ2\Gamma ^2 in Ω\Omega and whose random capacity is minimal. Under the same conditions, we prove that the sequence (Enmin)n1(E_n^{\min})_{n\geq1} converges toward the set of the solutions of a continuous deterministic problem of minimal cutset. We deduce from this a continuous deterministic max-flow min-cut theorem and a new proof of the law of large numbers for the maximal flow. This proof is more natural than the existing one, since it relies on the study of maximal streams and minimal cutsets, which are the pertinent objects to look at.Comment: Published in at http://dx.doi.org/10.1214/13-AOP851 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore