44 research outputs found

    Low Voltage Low Power Analogue Circuits Design

    Get PDF
    DisertačnĂ­ prĂĄce je zaměƙena na vĂœzkum nejbÄ›ĆŸnějĆĄĂ­ch metod, kterĂ© se vyuĆŸĂ­vajĂ­ pƙi nĂĄvrhu analogovĂœch obvodĆŻ s vyuĆŸitĂ­ nĂ­zkonapěƄovĂœch (LV) a nĂ­zkopƙíkonovĂœch (LP) struktur. Tyto LV LP obvody mohou bĂœt vytvoƙeny dĂ­ky vyspělĂœm technologiĂ­m nebo takĂ© vyuĆŸitĂ­m pokročilĂœch technik nĂĄvrhu. DisertačnĂ­ prĂĄce se zabĂœvĂĄ prĂĄvě pokročilĂœmi technikami nĂĄvrhu, pƙedevĆĄĂ­m pak nekonvenčnĂ­mi. Mezi tyto techniky patƙí vyuĆŸitĂ­ prvkĆŻ s ƙízenĂœm substrĂĄtem (bulk-driven - BD), s plovoucĂ­m hradlem (floating-gate - FG), s kvazi plovoucĂ­m hradlem (quasi-floating-gate - QFG), s ƙízenĂœm substrĂĄtem s plovoucĂ­m hradlem (bulk-driven floating-gate - BD-FG) a s ƙízenĂœm substrĂĄtem s kvazi plovoucĂ­m hradlem (quasi-floating-gate - BD-QFG). PrĂĄce je takĂ© orientovĂĄna na moĆŸnĂ© zpĆŻsoby implementace znĂĄmĂœch a modernĂ­ch aktivnĂ­ch prvkĆŻ pracujĂ­cĂ­ch v napěƄovĂ©m, proudovĂ©m nebo mix-mĂłdu. Mezi tyto prvky lze začlenit zesilovače typu OTA (operational transconductance amplifier), CCII (second generation current conveyor), FB-CCII (fully-differential second generation current conveyor), FB-DDA (fully-balanced differential difference amplifier), VDTA (voltage differencing transconductance amplifier), CC-CDBA (current-controlled current differencing buffered amplifier) a CFOA (current feedback operational amplifier). Za Ășčelem potvrzenĂ­ funkčnosti a chovĂĄnĂ­ vĂœĆĄe zmĂ­něnĂœch struktur a prvkĆŻ byly vytvoƙeny pƙíklady aplikacĂ­, kterĂ© simulujĂ­ usměrƈovacĂ­ a induktančnĂ­ vlastnosti diody, dĂĄle pak filtry dolnĂ­ propusti, pĂĄsmovĂ© propusti a takĂ© univerzĂĄlnĂ­ filtry. VĆĄechny aktivnĂ­ prvky a pƙíklady aplikacĂ­ byly ověƙeny pomocĂ­ PSpice simulacĂ­ s vyuĆŸitĂ­m parametrĆŻ technologie 0,18 m TSMC CMOS. Pro ilustraci pƙesnĂ©ho a ĂșčinnĂ©ho chovĂĄnĂ­ struktur je v disertačnĂ­ prĂĄci zahrnuto velkĂ© mnoĆŸstvĂ­ simulačnĂ­ch vĂœsledkĆŻ.The dissertation thesis is aiming at examining the most common methods adopted by analog circuits' designers in order to achieve low voltage (LV) low power (LP) configurations. The capability of LV LP operation could be achieved either by developed technologies or by design techniques. The thesis is concentrating upon design techniques, especially the non–conventional ones which are bulk–driven (BD), floating–gate (FG), quasi–floating–gate (QFG), bulk–driven floating–gate (BD–FG) and bulk–driven quasi–floating–gate (BD–QFG) techniques. The thesis also looks at ways of implementing structures of well–known and modern active elements operating in voltage–, current–, and mixed–mode such as operational transconductance amplifier (OTA), second generation current conveyor (CCII), fully–differential second generation current conveyor (FB–CCII), fully–balanced differential difference amplifier (FB–DDA), voltage differencing transconductance amplifier (VDTA), current–controlled current differencing buffered amplifier (CC–CDBA) and current feedback operational amplifier (CFOA). In order to confirm the functionality and behavior of these configurations and elements, they have been utilized in application examples such as diode–less rectifier and inductance simulations, as well as low–pass, band–pass and universal filters. All active elements and application examples have been verified by PSpice simulator using the 0.18 m TSMC CMOS parameters. Sufficient numbers of simulated plots are included in this thesis to illustrate the precise and strong behavior of structures.

    MFPA: Mixed-Signal Field Programmable Array for Energy-Aware Compressive Signal Processing

    Get PDF
    Compressive Sensing (CS) is a signal processing technique which reduces the number of samples taken per frame to decrease energy, storage, and data transmission overheads, as well as reducing time taken for data acquisition in time-critical applications. The tradeoff in such an approach is increased complexity of signal reconstruction. While several algorithms have been developed for CS signal reconstruction, hardware implementation of these algorithms is still an area of active research. Prior work has sought to utilize parallelism available in reconstruction algorithms to minimize hardware overheads; however, such approaches are limited by the underlying limitations in CMOS technology. Herein, the MFPA (Mixed-signal Field Programmable Array) approach is presented as a hybrid spin-CMOS reconfigurable fabric specifically designed for implementation of CS data sampling and signal reconstruction. The resulting fabric consists of 1) slice-organized analog blocks providing amplifiers, transistors, capacitors, and Magnetic Tunnel Junctions (MTJs) which are configurable to achieving square/square root operations required for calculating vector norms, 2) digital functional blocks which feature 6-input clockless lookup tables for computation of matrix inverse, and 3) an MRAM-based nonvolatile crossbar array for carrying out low-energy matrix-vector multiplication operations. The various functional blocks are connected via a global interconnect and spin-based analog-to-digital converters. Simulation results demonstrate significant energy and area benefits compared to equivalent CMOS digital implementations for each of the functional blocks used: this includes an 80% reduction in energy and 97% reduction in transistor count for the nonvolatile crossbar array, 80% standby power reduction and 25% reduced area footprint for the clockless lookup tables, and roughly 97% reduction in transistor count for a multiplier built using components from the analog blocks. Moreover, the proposed fabric yields 77% energy reduction compared to CMOS when used to implement CS reconstruction, in addition to latency improvements

    Sub-10nm Transistors for Low Power Computing: Tunnel FETs and Negative Capacitance FETs

    Get PDF
    One of the major roadblocks in the continued scaling of standard CMOS technology is its alarmingly high leakage power consumption. Although circuit and system level methods can be employed to reduce power, the fundamental limit in the overall energy efficiency of a system is still rooted in the MOSFET operating principle: an injection of thermally distributed carriers, which does not allow subthreshold swing (SS) lower than 60mV/dec at room temperature. Recently, a new class of steep-slope devices like Tunnel FETs (TFETs) and Negative-Capacitance FETs (NCFETs) have garnered intense interest due to their ability to surpass the 60mV/dec limit on SS at room temperature. The focus of this research is on the simulation and design of TFETs and NCFETs for ultra-low power logic and memory applications. Using full band quantum mechanical model within the Non-Equilibrium Greens Function (NEGF) formalism, source-underlapping has been proposed as an effective technique to lower the SS in GaSb-InAs TFETs. Band-tail states, associated with heavy source doping, are shown to significantly degrade the SS in TFETs from their ideal value. To solve this problem, undoped source GaSb-InAs TFET in an i-i-n configuration is proposed. A detailed circuit-to-system level evaluation is performed to investigate the circuit level metrics of the proposed devices. To demonstrate their potential in a memory application, a 4T gain cell (GC) is proposed, which utilizes the low-leakage and enhanced drain capacitance of TFETs to realize a robust and long retention time GC embedded-DRAMs. The device/circuit/system level evaluation of proposed TFETs demonstrates their potential for low power digital applications. The second part of the thesis focuses on the design space exploration of hysteresis-free Negative Capacitance FETs (NCFETs). A cross-architecture analysis using HfZrOx ferroelectric (FE-HZO) integrated on bulk MOSFET, fully-depleted SOI-FETs, and sub-10nm FinFETs shows that FDSOI and FinFET configurations greatly benefit the NCFET performance due to their undoped body and improved gate-control which enables better capacitance matching with the ferroelectric. A low voltage NC-FinFET operating down to 0.25V is predicted using ultra-thin 3nm FE-HZO. Next, we propose one-transistor ferroelectric NOR type (Fe-NOR) non-volatile memory based on HfZrOx ferroelectric FETs (FeFETs). The enhanced drain-channel coupling in ultrashort channel FeFETs is utilized to dynamically modulate memory window of storage cells thereby resulting in simple erase-, program-and read-operations. The simulation analysis predicts sub-1V program/erase voltages in the proposed Fe-NOR memory array and therefore presents a significantly lower power alternative to conventional FeRAM and NOR flash memories

    Multiple-Independent-Gate Field-Effect Transistors for High Computational Density and Low Power Consumption

    Get PDF
    Transistors are the fundamental elements in Integrated Circuits (IC). The development of transistors significantly improves the circuit performance. Numerous technology innovations have been adopted to maintain the continuous scaling down of transistors. With all these innovations and efforts, the transistor size is approaching the natural limitations of materials in the near future. The circuits are expected to compute in a more efficient way. From this perspective, new device concepts are desirable to exploit additional functionality. On the other hand, with the continuously increased device density on the chips, reducing the power consumption has become a key concern in IC design. To overcome the limitations of Complementary Metal-Oxide-Semiconductor (CMOS) technology in computing efficiency and power reduction, this thesis introduces the multiple- independent-gate Field-Effect Transistors (FETs) with silicon nanowires and FinFET structures. The device not only has the capability of polarity control, but also provides dual-threshold- voltage and steep-subthreshold-slope operations for power reduction in circuit design. By independently modulating the Schottky junctions between metallic source/drain and semiconductor channel, the dual-threshold-voltage characteristics with controllable polarity are achieved in a single device. This property is demonstrated in both experiments and simulations. Thanks to the compact implementation of logic functions, circuit-level benchmarking shows promising performance with a configurable dual-threshold-voltage physical design, which is suitable for low-power applications. This thesis also experimentally demonstrates the steep-subthreshold-slope operation in the multiple-independent-gate FETs. Based on a positive feedback induced by weak impact ionization, the measured characteristics of the device achieve a steep subthreshold slope of 6 mV/dec over 5 decades of current. High Ion/Ioff ratio and low leakage current are also simultaneously obtained with a good reliability. Based on a physical analysis of the device operation, feasible improvements are suggested to further enhance the performance. A physics-based surface potential and drain current model is also derived for the polarity-controllable Silicon Nanowire FETs (SiNWFETs). By solving the carrier transport at Schottky junctions and in the channel, the core model captures the operation with independent gate control. It can serve as the core framework for developing a complete compact model by integrating advanced physical effects. To summarize, multiple-independent-gate SiNWFETs and FinFETs are extensively studied in terms of fabrication, modeling, and simulation. The proposed device concept expands the family of polarity-controllable FETs. In addition to the enhanced logic functionality, the polarity-controllable SiNWFETs and FinFETs with the dual-threshold-voltage and steep-subthreshold-slope operation can be promising candidates for future IC design towards low-power applications

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Approximate and timing-speculative hardware design for high-performance and energy-efficient video processing

    Get PDF
    Since the end of transistor scaling in 2-D appeared on the horizon, innovative circuit design paradigms have been on the rise to go beyond the well-established and ultraconservative exact computing. Many compute-intensive applications – such as video processing – exhibit an intrinsic error resilience and do not necessarily require perfect accuracy in their numerical operations. Approximate computing (AxC) is emerging as a design alternative to improve the performance and energy-efficiency requirements for many applications by trading its intrinsic error tolerance with algorithm and circuit efficiency. Exact computing also imposes a worst-case timing to the conventional design of hardware accelerators to ensure reliability, leading to an efficiency loss. Conversely, the timing-speculative (TS) hardware design paradigm allows increasing the frequency or decreasing the voltage beyond the limits determined by static timing analysis (STA), thereby narrowing pessimistic safety margins that conventional design methods implement to prevent hardware timing errors. Timing errors should be evaluated by an accurate gate-level simulation, but a significant gap remains: How these timing errors propagate from the underlying hardware all the way up to the entire algorithm behavior, where they just may degrade the performance and quality of service of the application at stake? This thesis tackles this issue by developing and demonstrating a cross-layer framework capable of performing investigations of both AxC (i.e., from approximate arithmetic operators, approximate synthesis, gate-level pruning) and TS hardware design (i.e., from voltage over-scaling, frequency over-clocking, temperature rising, and device aging). The cross-layer framework can simulate both timing errors and logic errors at the gate-level by crossing them dynamically, linking the hardware result with the algorithm-level, and vice versa during the evolution of the application’s runtime. Existing frameworks perform investigations of AxC and TS techniques at circuit-level (i.e., at the output of the accelerator) agnostic to the ultimate impact at the application level (i.e., where the impact is truly manifested), leading to less optimization. Unlike state of the art, the framework proposed offers a holistic approach to assessing the tradeoff of AxC and TS techniques at the application-level. This framework maximizes energy efficiency and performance by identifying the maximum approximation levels at the application level to fulfill the required good enough quality. This thesis evaluates the framework with an 8-way SAD (Sum of Absolute Differences) hardware accelerator operating into an HEVC encoder as a case study. Application-level results showed that the SAD based on the approximate adders achieve savings of up to 45% of energy/operation with an increase of only 1.9% in BD-BR. On the other hand, VOS (Voltage Over-Scaling) applied to the SAD generates savings of up to 16.5% in energy/operation with around 6% of increase in BD-BR. The framework also reveals that the boost of about 6.96% (at 50°) to 17.41% (at 75° with 10- Y aging) in the maximum clock frequency achieved with TS hardware design is totally lost by the processing overhead from 8.06% to 46.96% when choosing an unreliable algorithm to the blocking match algorithm (BMA). We also show that the overhead can be avoided by adopting a reliable BMA. This thesis also shows approximate DTT (Discrete Tchebichef Transform) hardware proposals by exploring a transform matrix approximation, truncation and pruning. The results show that the approximate DTT hardware proposal increases the maximum frequency up to 64%, minimizes the circuit area in up to 43.6%, and saves up to 65.4% in power dissipation. The DTT proposal mapped for FPGA shows an increase of up to 58.9% on the maximum frequency and savings of about 28.7% and 32.2% on slices and dynamic power, respectively compared with stat

    Analog Circuit Design in PD-SOI CMOS Technology for High Temperatures up to 400°C using Reverse Body Biasing (RBB)

    Get PDF
    This work focuses on analog integrated CMOS (Complementary Metal-Oxide-Semiconductor) circuit design in SOI (Silicon on Insulator) technology for the use in high temperature applications. It investigates the influence of reverse body biasing (RBB) on the analog characteristics of SOI-MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor) transistors. Additionally, the enhancement of the operation capability of fundamental analog circuits at high temperatures up to 400°C with the use of RBB is investigated. Analog and digital integrated circuits are used in a variety of applications, e.g. consumer electronics or industrial measurement equipment. These integrated circuits have to work properly in the temperature range predefined by the application. As an example, operating temperatures reaching from −50°C to 250°C are required for geothermal drilling applications. Currently in the automotive industry, electronics have to operate reliably up to 150°C and as control electronics are placed closer to the engine, a much higher operating temperature is required. High temperature electronics are also used in avionic- and space applications, e.g. for future Venus exploration missions, where they have to withstand operating temperatures of 300°C to 500°C. Active or passive cooling of electronic components requires additional space and weight that increases the cost of the overall system. Cooling can be avoided in case electronics are capable of operating in harsh environmental conditions, i.e. at high temperatures. SOI-MOSFET devices are theoretically capable of operation up to 400°C or even higher, depending on the doping concentration of the silicon film. Nearly all material and device properties of importance to electronics worsen with increasing temperature, which is why 300°C to 350°C is the currently stated experimental maximum operating temperature of SOI devices. Analog circuit design up to the theoretical temperature limit exhibits severe limitations as SOI-MOSFET device characteristics are degenerated. SOI-MOSFET devices are partially depleted (PD) or fully depleted (FD), depending on the temperature, doping concentration of the silicon film, silicon film thickness and also channel length. FD devices offer a much better analog performance compared to their partially depleted counterparts and are preferred for analog circuit design. In the considered SOI technology, SOI- MOSFET devices are FD at low temperatures and PD at high temperatures. The transition from FD to PD at high temperatures leads to increased device leakage currents and hence reduces the overall performance of the transistor devices. Thereby, the gm/Id factor as a major figure of merit is decreased dramatically at high temperatures. Especially the moderate inversion region, which offers high intrinsic gain and moderate intrinsic bandwidth, is strongly affected as device leakage currents exceed the range of device operating currents at high temperatures. Reverse body biasing (RBB) refers to the reverse biasing of the film-source PN-junction of a MOSFET transistor. In recent works, reverse body biasing has been applied to digital circuits in order to reduce the static current consumption. Reverse body biasing has also been investigated in the analog domain. Nevertheless, the importance of the technique to realize analog circuits capable of operating at the theoretical temperature limit of SOI technology has not been identified yet. SOI-MOSFET devices with an H-shaped gate are investigated in a 1.0 ”m PD-SOI technology. These devices provide a body-contact, which is used to apply the reverse body bias. It is found that due to the use of RBB, these devices remain fully depleted in the considered temperature range up to 400°C. Due to the reduction of leakage currents, reverse biased SOI-MOSFET devices are capable of operating in the mid moderate inversion region, with an operating current of one fifth of the leakage current level which was measured without RBB. This results in an improved gm/Id factor and an increase of the intrinsic gain by approximately 14 dB. Besides the investigation of SOI-MOSFET device characteristics, reverse body biasing is also applied to fundamental analog building blocks, e.g. an analog switch, current mirrors, a two-stage operational amplifier and a first order bandgap voltage reference. It is found that reverse body biasing significantly improves the high temperature operation of these circuits. In summary, the proposed technique of reverse body biasing offers the possibility to achieve FD device characteristics in a PD-SOI technology and thereby to improve the performance of analog circuits at high temperatures up to 400°C.Die vorliegende Arbeit ist im Bereich der analogen, integrierten CMOS (Complementary Metal-Oxide-Semiconductor) Schaltungstechnik in SOI (Silicon on Insulator) Technologie fĂŒr den Einsatz in Hochtemperaturanwendungen angesiedelt. Ausgehend von der Untersuchung analoger Transistoreigenschaften von SOI-MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor) Transistoren unter Verwendung von RBB (Reverse body biasing), wird zusĂ€tzlich die verbesserte Hochtemperaturtauglichkeit grundlegender analoger Schaltungen bis 400°C unter dem Einfluss von RBB untersucht. Analoge und digitale integrierte Schaltungen werden in einer Vielzahl von Anwendungen, wie z. B. in der Unterhaltungselektronik oder der industriellen Messtechnik eingesetzt. Dabei mĂŒssen diese Schaltungen in dem fĂŒr die Anwendung spezifizierten Temperaturbereich zuverlĂ€ssig arbeiten. Beispielsweise werden elektronische Bauelemente in einem Temperaturbereich von −50°C bis 250°C zur DurchfĂŒhrung geo-thermischer Bohrungen eingesetzt. In der Automobilindustrie mĂŒssen integrierte Schaltungen bis zu einer Temperatur von 150°C zuverlĂ€ssig arbeiten, wobei durch die Platzierung der Steuerelektronik in unmittelbarer NĂ€he zum Motor kĂŒnftig weiter steigende Betriebstemperaturen erforderlich werden. Die Hochtemperaturelektronik findet ebenfalls Anwendung in der Luft- und Raumfahrt. Bei der zukĂŒnftigen Erkundung der Venus beispielsweise, mĂŒssen Umgebungstemperaturen von 300°C-500°C von allen Systemkomponenten unbeschadet ĂŒberstanden werden. Die aktive oder passive KĂŒhlung integrierter, elektronischer Komponenten erfordert zusĂ€tzlich Platz und Gewicht, und erhöht somit die Kosten des Gesamtsystems. Dabei kann die KĂŒhlung elektronischer Komponenten vermieden werden, wenn diese in der Lage sind, bei hohen Umgebungstemperaturen zu arbeiten. SOI-MOSFET Transistoren können theoretisch bei Umgebungstemperaturen bis zu 400°C und höher betrieben werden. Diese Temperaturobergrenze wird stark durch die Dotierstoffkonzentration im Siliziumfilm und der Siliziumfilmdicke bestimmt. Da nahezu alle wesentlichen Material- und Leistungseigenschaften integrierter Schaltungen durch steigende Umgebungstemperaturen negativ beeinflusst werden, liegt die momentane Temperaturobergrenze von SOI-basierten Hochtemperaturschaltungen im Bereich der praktischen Anwendung daher lediglich bei 300°C bis 350°C. Somit werden die Möglichkeiten zur Realisierung integrierter Schaltungen ĂŒber diese Grenze hinaus durch die Degeneration der Transistoreigenschaften bei hohen Temperaturen limitiert. AbhĂ€ngig von der Temperatur, der Dotierstoffkonzentration im Siliziumfilm, der Siliziumfilmdicke und der KanallĂ€nge, sind die Transistoren teilweise verarmt (partially depleted, PD) oder vollstĂ€ndig verarmt (fully depleted, FD). FD Transistoren weisen deutlich verbesserte Analogeigenschaften auf als PD Transistoren und werden aus diesem Grund bevorzugt eingesetzt. In der untersuchten SOI Technologie Ă€ndern SOI-MOSFET Transistoren ihren Verarmungszustand von FD bei niedrigen Temperaturen zu PD bei hohen Temperaturen. Der Zustand der teilweisen Verarmung fĂŒhrt zum Anstieg von Leckströmen innerhalb der Transistoren und damit zur Degeneration der analogen Transistoreigenschaften. Reverse body biasing bezeichnet den Betrieb von MOSFET Transistoren mit einem in Sperrrichtung betriebenen Film-Source PN-Übergang. In bisherigen Arbeiten wurde RBB dazu eingesetzt, das Leckstromverhalten digitaler integrierter Schaltungen zu verbessern und unter anderem um die Durchbruchspannung der Transistoren zu beeinflussen. Die Auswirkungen dieser Methode auf die analogen Eigenschaften von SOI-MOSFET Transistoren und den Betrieb analoger Schaltungen bei hohen Temperaturen wurden jedoch bislang nicht ausreichend untersucht. In dieser Arbeit werden HGATE SOI-MOSFET Transistoren in einer 1.0 ”m PD-SOI CMOS Technologie untersucht. Diese Transistoren zeichnen sich durch eine H-förmige Gate-Elektrode sowie einen separaten Filmkontakt aus, welcher zur Anwendung von RBB verwendet wird. Es zeigt sich, dass der Verarmungszustand der Transistoren durch die Anwendung von RBB bei hohen Temperaturen positiv beeinflusst werden kann. So bleiben die untersuchen Transistoren im betrachteten Temperaturbereich bis 400°C vollstĂ€ndig verarmt. Durch die deutliche Reduzierung der Leckströme ist es möglich, die Transistoren bis 400°C im Arbeitspunkt der moderaten Inversion zu betreiben. Dabei kann der Betriebsstrom der Transistoren bis auf ein FĂŒnftel des vorherigen Leckstromniveaus reduziert werden, was zu einer wesentlichen Verbesserung des gm/Id Faktors und einem Anstieg der intrinsischen VerstĂ€rkung um ca. 14 dB fĂŒhrt. Neben der Untersuchung der SOI-MOSFET Transistoreigenschaften wurde zudem der Einfluss von RBB auf die Hochtemperaturtauglichkeit grundlegender analoger Schaltungsblöcke, wie z. B. analoger Schalter, Stromspiegel, zweistufiger OperationsverstĂ€rker und Bandgap Spannungsreferenzen untersucht. Es zeigt sich, dass sich die Hochtemperaturtauglichkeit dieser Schaltungen durch den Einsatz von RBB maßgeblich verbessern lĂ€sst. Zusammengefasst werden durch die Anwendung von RBB in einer PD-SOI Technologie FD-SOI Transistoreigenschaften erzielt, die den Betrieb analoger Schaltungen bis 400°C ermöglichen

    Journal of Telecommunications and Information Technology, 2009, nr 4

    Get PDF
    kwartalni
    corecore