138 research outputs found

    Modeling and Analysis of Noise and Interconnects for On-Chip Communication Link Design

    Get PDF
    This thesis considers modeling and analysis of noise and interconnects in onchip communication. Besides transistor count and speed, the capabilities of a modern design are often limited by on-chip communication links. These links typically consist of multiple interconnects that run parallel to each other for long distances between functional or memory blocks. Due to the scaling of technology, the interconnects have considerable electrical parasitics that affect their performance, power dissipation and signal integrity. Furthermore, because of electromagnetic coupling, the interconnects in the link need to be considered as an interacting group instead of as isolated signal paths. There is a need for accurate and computationally effective models in the early stages of the chip design process to assess or optimize issues affecting these interconnects. For this purpose, a set of analytical models is developed for on-chip data links in this thesis. First, a model is proposed for modeling crosstalk and intersymbol interference. The model takes into account the effects of inductance, initial states and bit sequences. Intersymbol interference is shown to affect crosstalk voltage and propagation delay depending on bus throughput and the amount of inductance. Next, a model is proposed for the switching current of a coupled bus. The model is combined with an existing model to evaluate power supply noise. The model is then applied to reduce both functional crosstalk and power supply noise caused by a bus as a trade-off with time. The proposed reduction method is shown to be effective in reducing long-range crosstalk noise. The effects of process variation on encoded signaling are then modeled. In encoded signaling, the input signals to a bus are encoded using additional signaling circuitry. The proposed model includes variation in both the signaling circuitry and in the wires to calculate the total delay variation of a bus. The model is applied to study level-encoded dual-rail and 1-of-4 signaling. In addition to regular voltage-mode and encoded voltage-mode signaling, current-mode signaling is a promising technique for global communication. A model for energy dissipation in RLC current-mode signaling is proposed in the thesis. The energy is derived separately for the driver, wire and receiver termination.Siirretty Doriast

    Theoretical and practical aspects of linear and nonlinear model order reduction techniques

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 133-142).Model order reduction methods have proved to be an important technique for accelerating time-domain simulation in a variety of computer-aided design tools. In this study we present several new techniques for model reduction of the large-scale linear and nonlinear systems. First, we present a method for nonlinear system reduction based on a combination of the trajectory piecewise-linear (TPWL) method with truncated-balanced realizations (TBR). We analyze the stability characteristics of this combined method using perturbation theory. Second, we describe a linear reduction method that approximates TBR model reduction and takes advantage of sparsity of the system matrices or available accelerated solvers. This method is based on AISIAD (approximate implicit subspace iteration with alternate directions) and uses low-rank approximations of a system's gramians. This method is shown to be advantageous over the common approach of independently approximating the controllability and observability gramians, as such independent approximation methods can be inefficient when the gramians do not share a common dominant eigenspace. Third, we present a graph-based method for reduction of parameterized RC circuits. We prove that this method preserves stability and passivity of the models for nominal reduction. We present computational results for large collections of nominal and parameter-dependent circuits. Finally, we present a case study of model reduction applied to electroosmotic flow of a marker concentration pulse in a U-shaped microfluidic channel, where the marker flow in the channel is described by a three-dimensional convection-diffusion equation. First, we demonstrate the effectiveness of the modified AISIAD method in generating a low order models that correctly describe the dispersion of the marker in the linear case; that is, for the case of concentration-independent mobility and diffusion constants.(cont) Next, we describe several methods for nonlinear model reduction when the diffusion and mobility constants become concentration-dependent.by Dmitry Missiuro Vasilyev.Ph.D

    Macromodels of Micro-Electro-Mechanical Systems (MEMS)

    Get PDF

    Model order reduction techniques for PEEC modeling of RF & high-speed multi-layer circuits.

    Get PDF
    by Hu Hai.Thesis (M.Phil.)--Chinese University of Hong Kong, 2006.Includes bibliographical references.Abstracts in English and Chinese.Author's Declaration --- p.iiAbstract --- p.iiiAcknowledgements --- p.viTable of Contents --- p.viiiList of Figures --- p.xiList of Tables --- p.xivChapter Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Background --- p.1Chapter 1.2 --- Overview of This Work --- p.2Chapter 1.3 --- Original Contributions in the Thesis --- p.3Chapter 1.4 --- Thesis Organization --- p.4Chapter Chapter 2 --- PEEC Modeling Background --- p.5Chapter 2.1 --- Introduction --- p.5Chapter 2.2 --- PEEC Principles --- p.6Chapter 2.3 --- Meshing Scheme --- p.10Chapter 2.4 --- Formulae for Calculating the Partial Elements --- p.12Chapter 2.4.1 --- Partial Inductance --- p.12Chapter 2.4.2 --- Partial Capacitance --- p.14Chapter 2.5 --- PEEC Application Example --- p.15Chapter 2.6 --- Summary --- p.17References --- p.18Chapter Chapter 3 --- Mathematical Model Order Reduction --- p.20Chapter 3.1 --- Introduction --- p.20Chapter 3.2 --- Modified Nodal Analysis --- p.21Chapter 3.2.1 --- Standard Nodal Analysis Method Review --- p.22Chapter 3.2.2 --- General Theory of Modified Nodal Analysis --- p.23Chapter 3.2.3 --- Calculate the System Poles Using MNA --- p.27Chapter 3.2.4 --- Examples and Comparisons --- p.28Chapter 3.3 --- Krylov Subspace MOR Method --- p.30Chapter 3.4 --- Examples of Krylov Subspace MOR --- p.32Chapter 3.5 --- Summary --- p.34References --- p.35Chapter Chapter 4 --- Physical Model Order Reduction --- p.38Chapter 4.1 --- Introduction --- p.38Chapter 4.2 --- Gaussian Elimination Method --- p.39Chapter 4.3 --- A Lossy PEEC Circuit Model --- p.44Chapter 4.3.1 --- Loss with Capacitance --- p.44Chapter 4.3.2 --- Loss with Inductance --- p.46Chapter 4.4 --- Conversion of Mutual Inductive Couplings --- p.47Chapter 4.5 --- Model Order Reduction Schemes --- p.50Chapter 4.5.1 --- Taylor Expansion Based MOR Scheme (Type I) --- p.51Chapter 4.5.2 --- Derived Complex-valued MOR Scheme (Type II) --- p.65Chapter 4.6 --- Summary --- p.88References --- p.88Chapter Chapter 5 --- Concluding Remarks --- p.92Chapter 5.1 --- Conclusion --- p.92Chapter 5.2 --- Future Improvement --- p.93Author's Publication --- p.9

    An assessment of technology alternatives for telecommunications and information management for the space exploration initiative

    Get PDF
    On the 20th anniversary of the Apollo 11 lunar landing, President Bush set forth ambitious goals for expanding human presence in the solar system. The Space Exploration Initiative (SEI) addresses these goals beginning with Space Station Freedom, followed by a permanent return to the Moon, and a manned mission to Mars. A well designed, adaptive Telecommunications, Navigation, and Information Management (TNIM) infrastructure is vital to the success of these missions. Utilizing initial projections of user requirements, a team under the direction of NASA's Office of Space Operations developed overall architectures and point designs to implement the TNIM functions for the Lunar and Mars mission scenarios. Based on these designs, an assessment of technology alternatives for the telecommunications and information management functions was performed. This technology assessment identifies technology developments necessary to meet the telecommunications and information management system requirements for SEI. Technology requirements, technology needs and alternatives, the present level of technology readiness in each area, and a schedule for development are presented

    Reduction of network models with a large number of sources

    Get PDF
    [no abstract

    Design of electronic active filters from ladder networks using linear transformations

    Get PDF
    Imperial Users onl

    State-space analysis and synthesis of active RLC networks

    Get PDF
    This dissertation provides theoretical foundations for the state-space analysis and synthesis of linear active RLC networks containing all four types of controlled sources. The analysis portion is concerned with an explicit representation of the state model and the order of complexity of a general linear active RLC network. The problem considered in the synthesis portion is the realization of a given A-matrix with an active nondegenerate RLC-ladder network or an active RLC network without any particular structure. The general active RLC network state model representations are explicitly expressed in terms of the fundamental circuit submatrices, the network element submatrices, and the dependency submatrices. The branch-capacitor voltages and the chord-inductor currents are uniformly chosen as the state variables. The controlled sources are controlled by the variables of the passive elements and the independent sources. The topological relationships of the network elements and controlled sources appear explicitly in the various submatrices of the state model representations. Such a formulation is helpful in providing an in-depth investigation of the qualitative properties of linear active networks. An algorithm using a unified procedure for evaluating the least upper bound of the order of complexity of a general linear active network is presented. Derivation of this algorithm is based upon the transformation of the original network into an equivalent network containing only resistors, inductors, capacitors, and controlled sources. The algorithm is simple and easy to apply and does not require finding a particular tree or making complicated calculations. The realization of a given A-matrix with an active nondegenerate RLC-ladder network is accomplished by factoring the A-matrix into three matrices. From these matrices, the values of the reactive elements, the topological structure of the passive elements, and the types, locations, and controlling functions of the controlled sources in the realized network are determined. The approach to the realization of a given A-matrix with an active RLC network without any particular structure is to examine the A-matrix for certain properties, identify them, and then synthesize a network from the given A-matrix. Within the general class of active RLC networks, two special classes are considered. Also the sufficient conditions for decomposition of a paramount matrix of order three are established --Abstract, pages ii-iii
    • …
    corecore