45 research outputs found

    Revision and Conditional Inference for Abstract Dialectical Frameworks

    Get PDF
    For propositional beliefs, there are well-established connections between belief revision, defeasible conditionals and nonmonotonic inference. In argumentative contexts, such connections have not yet been investigated. On the one hand, the exact relationship between formal argumentation and nonmonotonic inference relations is a research topic that keeps on eluding researchers despite recently intensified efforts, whereas argumentative revision has been studied in numerous works during recent years. In this paper, we show that similar relationships between belief revision, defeasible conditionals and nonmonotonic inference hold in argumentative contexts as well. We first define revision operators for abstract dialectical frameworks, and use such revision operators to define dynamic conditionals by means of the Ramsey test. We show that such conditionals can be equivalently defined using a total preorder over three-valued interpretations, and study the inferential behaviour of the resulting conditional inference relations

    On the Existence of Characterization Logics and Fundamental Properties of Argumentation Semantics

    Get PDF
    Given the large variety of existing logical formalisms it is of utmost importance to select the most adequate one for a specific purpose, e.g. for representing the knowledge relevant for a particular application or for using the formalism as a modeling tool for problem solving. Awareness of the nature of a logical formalism, in other words, of its fundamental intrinsic properties, is indispensable and provides the basis of an informed choice. One such intrinsic property of logic-based knowledge representation languages is the context-dependency of pieces of knowledge. In classical propositional logic, for example, there is no such context-dependence: whenever two sets of formulas are equivalent in the sense of having the same models (ordinary equivalence), then they are mutually replaceable in arbitrary contexts (strong equivalence). However, a large number of commonly used formalisms are not like classical logic which leads to a series of interesting developments. It turned out that sometimes, to characterize strong equivalence in formalism L, we can use ordinary equivalence in formalism L0: for example, strong equivalence in normal logic programs under stable models can be characterized by the standard semantics of the logic of here-and-there. Such results about the existence of characterizing logics has rightly been recognized as important for the study of concrete knowledge representation formalisms and raise a fundamental question: Does every formalism have one? In this thesis, we answer this question with a qualified ā€œyesā€. More precisely, we show that the important case of considering only finite knowledge bases guarantees the existence of a canonical characterizing formalism. Furthermore, we argue that those characterizing formalisms can be seen as classical, monotonic logics which are uniquely determined (up to isomorphism) regarding their model theory. The other main part of this thesis is devoted to argumentation semantics which play the flagship role in Dungā€™s abstract argumentation theory. Almost all of them are motivated by an easily understandable intuition of what should be acceptable in the light of conflicts. However, although these intuitions equip us with short and comprehensible formal definitions it turned out that their intrinsic properties such as existence and uniqueness, expressibility, replaceability and verifiability are not that easily accessible. We review the mentioned properties for almost all semantics available in the literature. In doing so we include two main axes: namely first, the distinction between extension-based and labelling-based versions and secondly, the distinction of different kind of argumentation frameworks such as finite or unrestricted ones

    On the Complexity of Determining Defeat Relations Consistent with Abstract Argumentation Semantics

    Get PDF
    Typically in abstract argumentation, one starts with arguments and a defeat relation, and applies some semantics in order to determine the acceptability status of the arguments. We consider the converse case where we have knowledge of the acceptability status of arguments and want to identify a defeat relation that is consistent with the known acceptability data ā€“ the Ļƒ-consistency problem. Focusing on complete semantics as underpinning the majority of the major semantic types, we show that the complexity of determining a defeat relation that is consistent with some set of acceptability data is highly dependent on how the data is labelled. The extension-based 2-valued Ļƒ-consistency problem for complete semantics is revealed as NP-complete, whereas the labelling-based 3-valued Ļƒ-consistency problem is solvable within polynomial time. We then present an informal discussion on application to grounded, stable, and preferred semantics.</jats:p
    corecore