34 research outputs found

    Realizability of Schedules by Stochastic Time Petri Nets with Blocking Semantics: (Extended Version)

    Get PDF
    This paper considers realizability of expected schedules by production systemswith concurrent tasks, bounded resources that have to be shared among tasks,and random behaviors and durations. Schedules are high level views of desiredexecutions of systems represented as partial orders decorated with timing con-straints. Production systems (production cells,train networks. . . ) are modeled asstochastic time Petri nets STPNs with an elementary (1-bounded) semantics. Wedetail their interleaved operational semantics, and then propose a non-interleavedsemantics through the notion of time processes. We then consider boolean re-alizability: a schedule S is realizable by a net N if S embeds in a time processof N that satisfies all its constraints. However, with continuous time domains,the probability of a time process with exact dates is null. We hence considerprobabilistic realizability up to α time units, that holds if the probability that Nrealizes S with constraints enlarged by α is strictly positive. Upon a sensiblerestriction guaranteeing time progress, boolean and probabilistic realizabilityof a schedule can be checked on the finite set of symbolic prefixes extractedfrom a bounded unfolding of the net. We give a construction technique for theseprefixes and show that they represent all time processes of a net occurring up toa given maximal date. We then show how to verify existence of an embeddingand compute the probability of its realization

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Discrete Event Systems: Models and Applications; Proceedings of an IIASA Conference, Sopron, Hungary, August 3-7, 1987

    Get PDF
    Work in discrete event systems has just begun. There is a great deal of activity now, and much enthusiasm. There is considerable diversity reflecting differences in the intellectual formation of workers in the field and in the applications that guide their effort. This diversity is manifested in a proliferation of DEM formalisms. Some of the formalisms are essentially different. Some of the "new" formalisms are reinventions of existing formalisms presented in new terms. These "duplications" reveal both the new domains of intended application as well as the difficulty in keeping up with work that is published in journals on computer science, communications, signal processing, automatic control, and mathematical systems theory - to name the main disciplines with active research programs in discrete event systems. The first eight papers deal with models at the logical level, the next four are at the temporal level and the last six are at the stochastic level. Of these eighteen papers, three focus on manufacturing, four on communication networks, one on digital signal processing, the remaining ten papers address methodological issues ranging from simulation to computational complexity of some synthesis problems. The authors have made good efforts to make their contributions self-contained and to provide a representative bibliography. The volume should therefore be both accessible and useful to those who are just getting interested in discrete event systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This book is Open Access under a CC BY licence. The LNCS 11427 and 11428 proceedings set constitutes the proceedings of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019. The total of 42 full and 8 short tool demo papers presented in these volumes was carefully reviewed and selected from 164 submissions. The papers are organized in topical sections as follows: Part I: SAT and SMT, SAT solving and theorem proving; verification and analysis; model checking; tool demo; and machine learning. Part II: concurrent and distributed systems; monitoring and runtime verification; hybrid and stochastic systems; synthesis; symbolic verification; and safety and fault-tolerant systems

    Formal Techniques for Component-based Design of Embedded Systems

    Get PDF
    Embedded systems have become ubiquitous - from avionics and automotive over consumer electronics to medical devices. Failures may entailmaterial damage or compromise safety of human beings. At the same time, shorter product cycles, together with fast growing complexity of the systems to be designed, create a tremendous need for rigorous design techniques. The goal of component-based construction is to build complex systems from simpler components that are well understood and can be (re)used so as to accelerate the design process. This document presents a summary of the formal techniques for component-based design of embedded systems I have (co-)developed
    corecore