27 research outputs found

    Learning with online constraints : shifting concepts and active learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 99-102).Many practical problems such as forecasting, real-time decision making, streaming data applications, and resource-constrained learning, can be modeled as learning with online constraints. This thesis is concerned with analyzing and designing algorithms for learning under the following online constraints: i) The algorithm has only sequential, or one-at-time, access to data. ii) The time and space complexity of the algorithm must not scale with the number of observations. We analyze learning with online constraints in a variety of settings, including active learning. The active learning model is applicable to any domain in which unlabeled data is easy to come by and there exists a (potentially difficult or expensive) mechanism by which to attain labels. First, we analyze a supervised learning framework in which no statistical assumptions are made about the sequence of observations, and algorithms are evaluated based on their regret, i.e. their relative prediction loss with respect to the hindsight-optimal algorithm in a comparator class. We derive a, lower bound on regret for a class of online learning algorithms designed to track shifting concepts in this framework. We apply an algorithm we provided in previous work, that avoids this lower bound, to an energy-management problem in wireless networks, and demonstrate this application in a network simulation.(cont.) Second, we analyze a supervised learning framework in which the observations are assumed to be iid, and algorithms are compared by the number of prediction mistakes made in reaching a target generalization error. We provide a lower bound on mistakes for Perceptron, a standard online learning algorithm, for this framework. We introduce a modification to Perceptron and show that it avoids this lower bound, and in fact attains the optimal mistake-complexity for this setting. Third, we motivate and analyze an online active learning framework. The observations are assumed to be iid, and algorithms are judged by the number of label queries to reach a target generalization error. Our lower bound applies to the active learning setting as well, as a lower bound on labels for Perceptron paired with any active learning rule. We provide a new online active learning algorithm that avoids the lower bound, and we upper bound its label-complexity. The upper bound is optimal and also bounds the algorithm's total errors (labeled and unlabeled). We analyze the algorithm further, yielding a label-complexity bound under relaxed assumptions. Using optical character recognition data, we empirically compare the new algorithm to an online active learning algorithm with data-dependent performance guarantees, as well as to the combined variants of these two algorithms.by Claire E. Monteleoni.Ph.D

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    Finite-Time Thermodynamics

    Get PDF
    The theory around the concept of finite time describes how processes of any nature can be optimized in situations when their rate is required to be non-negligible, i.e., they must come to completion in a finite time. What the theory makes explicit is “the cost of haste”. Intuitively, it is quite obvious that you drive your car differently if you want to reach your destination as quickly as possible as opposed to the case when you are running out of gas. Finite-time thermodynamics quantifies such opposing requirements and may provide the optimal control to achieve the best compromise. The theory was initially developed for heat engines (steam, Otto, Stirling, a.o.) and for refrigerators, but it has by now evolved into essentially all areas of dynamic systems from the most abstract ones to the most practical ones. The present collection shows some fascinating current examples

    Learning with Online Constraints: Shifting Concepts and Active Learning

    Get PDF
    PhD thesisMany practical problems such as forecasting, real-time decisionmaking, streaming data applications, and resource-constrainedlearning, can be modeled as learning with online constraints. Thisthesis is concerned with analyzing and designing algorithms forlearning under the following online constraints: 1) The algorithm hasonly sequential, or one-at-time, access to data. 2) The time andspace complexity of the algorithm must not scale with the number ofobservations. We analyze learning with online constraints in avariety of settings, including active learning. The active learningmodel is applicable to any domain in which unlabeled data is easy tocome by and there exists a (potentially difficult or expensive)mechanism by which to attain labels.First, we analyze a supervised learning framework in which nostatistical assumptions are made about the sequence of observations,and algorithms are evaluated based on their regret, i.e. theirrelative prediction loss with respect to the hindsight-optimalalgorithm in a comparator class. We derive a lower bound on regretfor a class of online learning algorithms designed to track shiftingconcepts in this framework. We apply an algorithm we provided inprevious work, that avoids this lower bound, to an energy-managementproblem in wireless networks, and demonstrate this application in anetwork simulation. Second, we analyze a supervised learning frameworkin which the observations are assumed to be iid, and algorithms arecompared by the number of prediction mistakes made in reaching atarget generalization error. We provide a lower bound on mistakes forPerceptron, a standard online learning algorithm, for this framework.We introduce a modification to Perceptron and show that it avoids thislower bound, and in fact attains the optimal mistake-complexity forthis setting.Third, we motivate and analyze an online active learning framework.The observations are assumed to be iid, and algorithms are judged bythe number of label queries to reach a target generalizationerror. Our lower bound applies to the active learning setting as well,as a lower bound on labels for Perceptron paired with any activelearning rule. We provide a new online active learning algorithm thatavoids the lower bound, and we upper bound its label-complexity. Theupper bound is optimal and also bounds the algorithm's total errors(labeled and unlabeled). We analyze the algorithm further, yielding alabel-complexity bound under relaxed assumptions. Using opticalcharacter recognition data, we empirically compare the new algorithmto an online active learning algorithm with data-dependent performanceguarantees, as well as to the combined variants of these twoalgorithms

    Social work with airports passengers

    Get PDF
    Social work at the airport is in to offer to passengers social services. The main methodological position is that people are under stress, which characterized by a particular set of characteristics in appearance and behavior. In such circumstances passenger attracts in his actions some attention. Only person whom he trusts can help him with the documents or psychologically

    PSA 2016

    Get PDF
    These preprints were automatically compiled into a PDF from the collection of papers deposited in PhilSci-Archive in conjunction with the PSA 2016

    Wearables for Movement Analysis in Healthcare

    Get PDF
    Quantitative movement analysis is widely used in clinical practice and research to investigate movement disorders objectively and in a complete way. Conventionally, body segment kinematic and kinetic parameters are measured in gait laboratories using marker-based optoelectronic systems, force plates, and electromyographic systems. Although movement analyses are considered accurate, the availability of specific laboratories, high costs, and dependency on trained users sometimes limit its use in clinical practice. A variety of compact wearable sensors are available today and have allowed researchers and clinicians to pursue applications in which individuals are monitored in their homes and in community settings within different fields of study, such movement analysis. Wearable sensors may thus contribute to the implementation of quantitative movement analyses even during out-patient use to reduce evaluation times and to provide objective, quantifiable data on the patients’ capabilities, unobtrusively and continuously, for clinical purposes

    Applying the Free-Energy Principle to Complex Adaptive Systems

    Get PDF
    The free energy principle is a mathematical theory of the behaviour of self-organising systems that originally gained prominence as a unified model of the brain. Since then, the theory has been applied to a plethora of biological phenomena, extending from single-celled and multicellular organisms through to niche construction and human culture, and even the emergence of life itself. The free energy principle tells us that perception and action operate synergistically to minimize an organism’s exposure to surprising biological states, which are more likely to lead to decay. A key corollary of this hypothesis is active inference—the idea that all behavior involves the selective sampling of sensory data so that we experience what we expect to (in order to avoid surprises). Simply put, we act upon the world to fulfill our expectations. It is now widely recognized that the implications of the free energy principle for our understanding of the human mind and behavior are far-reaching and profound. To date, however, its capacity to extend beyond our brain—to more generally explain living and other complex adaptive systems—has only just begun to be explored. The aim of this collection is to showcase the breadth of the free energy principle as a unified theory of complex adaptive systems—conscious, social, living, or not
    corecore