1,219 research outputs found

    Tissue mimicking materials for imaging and therapy phantoms: a review

    Get PDF
    Tissue mimicking materials (TMMs), typically contained within phantoms, have been used for many decades in both imaging and therapeutic applications. This review investigates the specifications that are typically being used in development of the latest TMMs. The imaging modalities that have been investigated focus around CT, mammography, SPECT, PET, MRI and ultrasound. Therapeutic applications discussed within the review include radiotherapy, thermal therapy and surgical applications. A number of modalities were not reviewed including optical spectroscopy, optical imaging and planar x-rays. The emergence of image guided interventions and multimodality imaging have placed an increasing demand on the number of specifications on the latest TMMs. Material specification standards are available in some imaging areas such as ultrasound. It is recommended that this should be replicated for other imaging and therapeutic modalities. Materials used within phantoms have been reviewed for a series of imaging and therapeutic applications with the potential to become a testbed for cross-fertilization of materials across modalities. Deformation, texture, multimodality imaging and perfusion are common themes that are currently under development

    Virtual clinical trials in medical imaging: a review

    Get PDF
    The accelerating complexity and variety of medical imaging devices and methods have outpaced the ability to evaluate and optimize their design and clinical use. This is a significant and increasing challenge for both scientific investigations and clinical applications. Evaluations would ideally be done using clinical imaging trials. These experiments, however, are often not practical due to ethical limitations, expense, time requirements, or lack of ground truth. Virtual clinical trials (VCTs) (also known as in silico imaging trials or virtual imaging trials) offer an alternative means to efficiently evaluate medical imaging technologies virtually. They do so by simulating the patients, imaging systems, and interpreters. The field of VCTs has been constantly advanced over the past decades in multiple areas. We summarize the major developments and current status of the field of VCTs in medical imaging. We review the core components of a VCT: computational phantoms, simulators of different imaging modalities, and interpretation models. We also highlight some of the applications of VCTs across various imaging modalities

    Remote diagnostics and monitoring using microwave technique – improving healthcare in rural areas and in exceptional situations

    Get PDF
    Interests towards wireless portable medical diagnostics and monitoring systems, which could be used outside hospital e.g. during pandemic or catastrophic situations, have increased recently. Additionally, portable monitoring solutions could partially address widely recognized challenges related to healthcare equality in rural areas. Microwave based sensing has recently been recognized as emerging technology for portable medical monitoring and diagnostics devices since they may enable development of safe, reliable, and low-cost solutions for future’s telemedicine. The aim of this paper is to present the basic idea of microwave -based medical monitoring and discuss its possibilities, advantages, and challenges. In particular, we show that microwaves could be exploited in three pre-diagnostics applications: 1) Detection of abnormalities in the brain with a helmet type of monitoring device, 2) Detection of breast cancer with a self-monitoring vest, 3) Detection of blood clots in leg with an antenna band. The technique is based on detecting differences in radio channel responses caused by the abnormalities having different dielectric properties than the surrounding tissues. Our results of realistic simulations and experimental measurements show that even small-sized abnormalities, e.g. tumors, can change channel characteristics in detectable level

    A review of a strategic roadmapping exercise to advance clinical translation of photoacoustic imaging: From current barriers to future adoption

    Get PDF
    Photoacoustic imaging (PAI), also referred to as optoacoustic imaging, has shown promise in early-stage clinical trials in a range of applications from inflammatory diseases to cancer. While the first PAI systems have recently received regulatory approvals, successful adoption of PAI technology into healthcare systems for clinical decision making must still overcome a range of barriers, from education and training to data acquisition and interpretation. The International Photoacoustic Standardisation Consortium (IPASC) undertook an community exercise in 2022 to identify and understand these barriers, then develop a roadmap of strategic plans to address them. Here, we outline the nature and scope of the barriers that were identified, along with short-, medium- and long-term community efforts required to overcome them, both within and beyond the IPASC group

    Building and validation of low-cost breast phantoms for interventional procedures

    Get PDF
    Breast cancer is one of the types of cancer with the highest incidence in female population. Current treatment for breast cancer is lumpectomy, a breast conserving tumor excision procedure based on localizing the tumor with the help of hook-wire needle placement. Although this constitutes the standard approach in clinical practice, these procedures do not ensure the complete removal of the lesion due to the demonstrated high rate of positive margins. Improvements in these techniques are needed in order to reduce the number of second interventions, which usually involve mastectomy. Here is where ultrasound-guided interventions with real-time position tracking find their place. The problem is that these techniques require a high level of expertise and they present long learning curves. Therefore, training is needed in order to get from these tools their highest potential and have a real impact in the life of patients. For this purpose, breast phantoms were manufactured using liquid vinyl in order to achieve a mammary mimicking tissue. Optimal manufacturing technique was determined based on a gold-standard (commercial phantom). CT and ultrasound imaging were used to assess the identification of lesions. In addition, manufactured breast phantoms were evaluated by an expert clinician and surgical navigation was tested. This was done with the purpose of validating the breast phantom as a training tool useful for improving the outcomes of these procedures. The results indicated that the optimized formula achieved for the manufacturing of low-cost breast phantoms was suitable for training the skillset required in the interventions related with breast cancer treatment.Ingeniería Biomédica (Plan 2010

    Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation

    Get PDF
    A lack of accepted standards and standardized phantoms suitable for the technical validation of biophotonic instrumentation hinders the reliability and reproducibility of its experimental outputs. In this Perspective, we discuss general criteria for the design of tissue-mimicking biophotonic phantoms, and use these criteria and state-of-the-art developments to critically review the literature on phantom materials and on the fabrication of phantoms. By focusing on representative examples of standardization in diffuse optical imaging and spectroscopy, fluorescence-guided surgery and photoacoustic imaging, we identify unmet needs in the development of phantoms and a set of criteria (leveraging characterization, collaboration, communication and commitment) for the standardization of biophotonic instrumentation
    • …
    corecore