790 research outputs found

    Haptic-Enhanced Learning in Preclinical Operative Dentistry

    Get PDF
    Background: Virtual reality haptic simulators represent a new paradigm in dental education that may potentially impact the rate and efficiency of basic skill acquisition, as well as pedagogically influence the various aspects of students’ preclinical experience. However, the evidence to support their efficiency and inform their implementation is still limited. Objectives: This thesis set out to empirically examine how haptic VR simulator (Simodont®) can enhance the preclinical dental education experience particularly in the context of operative dentistry. We specify 4 distinct research themes to explore, namely: simulator validity (face, content and predictive), human factors in 3D stereoscopic display, motor skill acquisition, and curriculum integration. Methods: Chapter 3 explores the face and content validity of Simodont® haptic dental simulator among a group of postgraduate dental students. Chapter 4 examines the predictive utility of Simodont® in predicting subsequent preclinical and clinical performance. The results indicate the potential utility of the simulator in predicting future clinical dental performance among undergraduate students. Chapter 5 investigates the role of stereopsis in dentistry from two different perspectives via two studies. Chapter 6 explores the effect of qualitatively different types of pedagogical feedback on the training, transfer and retention of basic manual dexterity dental skills. The results indicate that the acquisition and retention of basic dental motor skills in novice trainees is best optimised through a combination of instructor and visualdisplay VR-driven feedback. A pedagogical model for integration of haptic dental simulator into the dental curriculum has been proposed in Chapter 7. Conclusion: The findings from this thesis provide new insights into the utility of the haptic virtual reality simulator in undergraduate preclinical dental education. Haptic simulators have promising potential as a pedagogical tool in undergraduate dentistry that complements the existing simulation methods. Integration of haptic VR simulators into the dental curriculum has to be informed by sound pedagogical principles and mapped into specific learning objectives

    Six Degree-of Freedom Haptic Rendering for Dental Implantology Simulation

    Get PDF
    International audienceDental implantology procedures are among the most com- plex surgical procedures executed by dentists. During the critical part of the procedure, the jawbone is drilled at the location of the missing tooth (or the missing group of teeth). This asks for specic skills from the dentists, who need to be well trained. In this paper we present a virtual reality based training system for im- plantology and we mainly focus on the simulation of drilling. We have two main contributions: The rst one is a method for precise haptic rendering of contacts between the drilling tool and the jawbone model issued from a CT-scan. The second one is the real-time simulation of the jawbone erosion during drilling which is compatible with the haptic rendering of contacts

    Development of a Haptic Training Simulation for the Administration of Dental Anaesthesia based upon Accurate Anatomical Data

    Get PDF
    In the dental curriculum, the initial administration of local anaesthesia injection on live patients is critical and students may experience a high degree of anxiety. Low self-confidence often caused by insufficient knowledge of anatomy has been repeatedly reported as one of the major causes. In this paper, we focus on the development of a haptic training system based upon an accurate anatomical model, which aims to encourage self-paced learning of the practical skills that are required in such procedures and to increase students’ self-confidence. We first present the workflow we have considered to develop an accurate anatomical model of the human head and neck and introduce a Virtual Reality-based application commissioned by NHS Education for Scotland to support the learning of the anatomy in a safe and repeatable manner. Finally, we describe the functionalities of the haptic training system and discuss further developments with regard to existing research outcomes

    Augmented reality in clinical dental training and education

    Get PDF
    Dentistry is a profession that requires coordinated motor skills in addition to acquired knowledge for ideal execution of any treatment plan for patients. Learning experiences have been modified over a period of time for students as well as for the healthcare providers. Conventional pre-clinical training employed the use of cadavers, but financial, ethical and supervisory constraints have become a major shortcoming. With the adaptation of technology in dentistry, pre-clinical training has now employed simulation. It provides the opportunity for students to develop psychomotor skills for procedures by practising pre-clinical, standardised learning competencies before they engage in patient-management. Simulation involves computer-aided learning, augmented reality and virtual reality, which are largely taking over pre-clinical teaching. Augmented reality is commonly being employed in maxillofacial, restorative, tooth morphology learning and mastering technique for administering local anaesthesia in dentistry. Virtual reality is being employed particularly in pre-treatment implant planning and dental education for students. Use of haptic technology, like robotics, is also gaining popularity, and facilitates a two-way communication between the user and the environment to better simulate the clinical setting for learning purposes

    Research on real-time physics-based deformation for haptic-enabled medical simulation

    Full text link
    This study developed a multiple effective visuo-haptic surgical engine to handle a variety of surgical manipulations in real-time. Soft tissue models are based on biomechanical experiment and continuum mechanics for greater accuracy. Such models will increase the realism of future training systems and the VR/AR/MR implementations for the operating room

    Haptic-Based 3D Carving Simulator

    Get PDF

    A haptic training environment for the heart myoblast cell injection procedure

    Full text link
    The heart muscle of a cardiac arrest victim continues to accumulate damage throughout its lifetime. This reduces the heart\u27s ability to pump sufficient oxygen and nutrient blood to meet the body\u27s needs. Medical researchers have shown that direct injection of pre-harvested skeletal myoblast cells into the heart can restore some muscle function [1]. This operative procedure usually necessitates the surgeon to open a patient\u27s chest. The open chest procedure is usually a lengthy process and often extends the recovery time of the patient. Alternatively, a high accuracy surgical aid robotic system can be used to assist the thoracoscopic surgery [2][3]. While the robotic surgical method aids faster patient recovery, a less experienced surgeon can potentially cause damage to surrounding tissue. This paper presents a study into the development of a virtual haptically-enabled heart myoblast injection simulation environment, which can be used to train new surgeons to get hands on experience with the process. The paper also discusses the development of a generic constraint motion technique for needle insertion. Experiments on human performance measures and efficacy, while interacting with haptic feedback training models, are also presented. The experiment involved 10 operators, with each person repeating the needle insertion and injection 10 times. A notable improvement in the task execution time with the number of repetitions was observed. Operators improved their time by up to 300% compared to their first training attempt for a static heart scenario. Under a dynamic heart motion, operator\u27s performance was slightly lower, with the successful rate of completing the experiment reduced from 84% to 75%
    corecore