18,046 research outputs found

    A simplified particulate model for coarse-grained hemodynamics simulations

    Get PDF
    Human blood flow is a multi-scale problem: in first approximation, blood is a dense suspension of plasma and deformable red cells. Physiological vessel diameters range from about one to thousands of cell radii. Current computational models either involve a homogeneous fluid and cannot track particulate effects or describe a relatively small number of cells with high resolution, but are incapable to reach relevant time and length scales. Our approach is to simplify much further than existing particulate models. We combine well established methods from other areas of physics in order to find the essential ingredients for a minimalist description that still recovers hemorheology. These ingredients are a lattice Boltzmann method describing rigid particle suspensions to account for hydrodynamic long range interactions and---in order to describe the more complex short-range behavior of cells---anisotropic model potentials known from molecular dynamics simulations. Paying detailedness, we achieve an efficient and scalable implementation which is crucial for our ultimate goal: establishing a link between the collective behavior of millions of cells and the macroscopic properties of blood in realistic flow situations. In this paper we present our model and demonstrate its applicability to conditions typical for the microvasculature.Comment: 12 pages, 11 figure

    Sound propagation and Mach cone in anisotropic hydrodynamics

    Full text link
    This letter is based on a kinetic theory approach to anisotropic hydrodynamics. We derive the sound wave equation in anisotropic hydrodynamics and show that a corresponding wave front is ellipsoidal. The phenomenon of Mach cone emission in anisotropic hydrodynamics is studied. It is shown that Mach cone in anisotropic case becomes asymmetric, i. e. in this limit they're two different angles, left and right with respect to the ultrasonic particle direction, which are determined by the direction of ultrasonic particle propagation and the asymmetry coefficient.Comment: 9 pages, 4 figure

    Viscous Bianchi type I universes in brane cosmology

    Get PDF
    We consider the dynamics of a viscous cosmological fluid in the generalized Randall-Sundrum model for an anisotropic, Bianchi type I brane. To describe the dissipative effects we use the Israel-Hiscock-Stewart full causal thermodynamic theory. By assuming that the matter on the brane obeys a linear barotropic equation of state, and the bulk viscous pressure has a power law dependence on the energy density, the general solution of the field equations can be obtained in an exact parametric form. The obtained solutions describe generally a non-inflationary brane world. In the large time limit the brane Universe isotropizes, ending in an isotropic and homogeneous state. The evolution of the temperature and of the comoving entropy of the Universe is also considered, and it is shown that due to the viscous dissipative processes a large amount of entropy is created in the early stages of evolution of the brane world.Comment: 13 pages, 5 figures, to appear in Class. Quantum Gra

    Local orientational ordering in fluids of spherical molecules with dipolar-like anisotropic adhesion

    Full text link
    We discuss some interesting physical features stemming from our previous analytical study of a simple model of a fluid with dipolar-like interactions of very short range in addition to the usual isotropic Baxter potential for adhesive spheres. While the isotropic part is found to rule the global structural and thermodynamical equilibrium properties of the fluid, the weaker anisotropic part gives rise to an interesting short-range local ordering of nearly spherical condensation clusters, containing short portions of chains having nose-to-tail parallel alignment which runs antiparallel to adjacent similar chains.Comment: 13 pages and 6 figure

    The Stability of Weakly Collisional Plasmas with Thermal and Composition Gradients

    Full text link
    Over the last decade, substantial efforts have been devoted to understanding the stability properties, transport phenomena, and long-term evolution of weakly-collisional, magnetized plasmas which are stratified in temperature. These studies have improved our understanding of the physics governing the intra-cluster medium (ICM), but assumed that ICM is a homogeneous. This, however, might not be a good approximation if heavy elements sediment in the inner region of the galaxy cluster. In this paper, we analyze the stability of a weakly-collisional, magnetized plane-parallel atmosphere which is stratified in both temperature and composition. This allows us to discuss for the first time the dynamics of weakly-collisional environments where heat conduction, momentum transport, and ion-diffusion are anisotropic with respect to the direction of the magnetic field. We show that, depending on the relative signs and magnitudes of the gradients in the temperature and the mean molecular weight, the plasma can be subject to a wide variety of unstable modes which include modifications to the magnetothermal instability (MTI), the heat-flux-driven buoyancy instability (HBI), and overstable gravity modes previously studied in homogeneous media. We discuss the astrophysical implications of our findings for a representative galaxy cluster where helium has sedimented. Our findings suggest that the core insulation that results from the magnetic field configurations that arise as a natural consequence of the HBI, which would be MTI stable in a homogeneous medium, could be alleviated if the mean molecular weight gradient is steep enough, i.e., (∇μ)/μ>(∇T)/T(\nabla \mu)/\mu > (\nabla T)/T. This study constitutes a first step toward understanding the interaction between magnetic turbulence and the diffusion of heavy elements in the ICM. (abridged)Comment: 16 pages, 7 figures. This article supersedes arXiv:1111.3372 (5 pages, 3 figures). The present version of this article is published in Ap
    • …
    corecore