4,043 research outputs found

    Symbolic representation of scenarios in Bologna airport on virtual reality concept

    Get PDF
    This paper is a part of a big Project named Retina Project, which is focused in reduce the workload of an ATCO. It uses the last technological advances as Virtual Reality concept. The work has consisted in studying the different awareness situations that happens daily in Bologna Airport. It has been analysed one scenario with good visibility where the sun predominates and two other scenarios with poor visibility where the rain and the fog dominate. Due to the study of visibility in the three scenarios computed, the conclusion obtained is that the overlay must be shown with a constant dimension regardless the position of the aircraft to be readable by the ATC and also, the frame and the flight strip should be coloured in a showy colour (like red) for a better control by the ATCO

    Rain rendering for evaluating and improving robustness to bad weather

    Full text link
    Rain fills the atmosphere with water particles, which breaks the common assumption that light travels unaltered from the scene to the camera. While it is well-known that rain affects computer vision algorithms, quantifying its impact is difficult. In this context, we present a rain rendering pipeline that enables the systematic evaluation of common computer vision algorithms to controlled amounts of rain. We present three different ways to add synthetic rain to existing images datasets: completely physic-based; completely data-driven; and a combination of both. The physic-based rain augmentation combines a physical particle simulator and accurate rain photometric modeling. We validate our rendering methods with a user study, demonstrating our rain is judged as much as 73% more realistic than the state-of-theart. Using our generated rain-augmented KITTI, Cityscapes, and nuScenes datasets, we conduct a thorough evaluation of object detection, semantic segmentation, and depth estimation algorithms and show that their performance decreases in degraded weather, on the order of 15% for object detection, 60% for semantic segmentation, and 6-fold increase in depth estimation error. Finetuning on our augmented synthetic data results in improvements of 21% on object detection, 37% on semantic segmentation, and 8% on depth estimation.Comment: 19 pages, 19 figures, IJCV 2020 preprint. arXiv admin note: text overlap with arXiv:1908.1033

    Synthetic Dataset Generation for Adversarial Machine Learning Research

    Full text link
    Existing adversarial example research focuses on digitally inserted perturbations on top of existing natural image datasets. This construction of adversarial examples is not realistic because it may be difficult, or even impossible, for an attacker to deploy such an attack in the real-world due to sensing and environmental effects. To better understand adversarial examples against cyber-physical systems, we propose approximating the real-world through simulation. In this paper we describe our synthetic dataset generation tool that enables scalable collection of such a synthetic dataset with realistic adversarial examples. We use the CARLA simulator to collect such a dataset and demonstrate simulated attacks that undergo the same environmental transforms and processing as real-world images. Our tools have been used to collect datasets to help evaluate the efficacy of adversarial examples, and can be found at https://github.com/carla-simulator/carla/pull/4992

    RMT: Rule-based Metamorphic Testing for Autonomous Driving Models

    Full text link
    Deep neural network models are widely used for perception and control in autonomous driving. Recent work uses metamorphic testing but is limited to using equality-based metamorphic relations and does not provide expressiveness for defining inequality-based metamorphic relations. To encode real world traffic rules, domain experts must be able to express higher order relations e.g., a vehicle should decrease speed in certain ratio, when there is a vehicle x meters ahead and compositionality e.g., a vehicle must have a larger deceleration, when there is a vehicle ahead and when the weather is rainy and proportional compounding effect to the test outcome. We design RMT, a declarative rule-based metamorphic testing framework. It provides three components that work in concert:(1) a domain specific language that enables an expert to express higher-order, compositional metamorphic relations, (2) pluggable transformation engines built on a variety of image and graphics processing techniques, and (3) automated test generation that translates a human-written rule to a corresponding executable, metamorphic relation and synthesizes meaningful inputs.Our evaluation using three driving models shows that RMT can generate meaningful test cases on which 89% of erroneous predictions are found by enabling higher-order metamorphic relations. Compositionality provides further aids for generating meaningful, synthesized inputs-3012 new images are generated by compositional rules. These detected erroneous predictions are manually examined and confirmed by six human judges as meaningful traffic rule violations. RMT is the first to expand automated testing capability for autonomous vehicles by enabling easy mapping of traffic regulations to executable metamorphic relations and to demonstrate the benefits of expressivity, customization, and pluggability
    • …
    corecore