16,497 research outputs found

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Time and Energy Managed Operations (TEMO): Cessna Citation II Flight Trials

    Get PDF
    From 9-26 October 2015 the Netherlands Aerospace Centre (NLR) in cooperation with Delft University of Technology (DUT) has executed Clean Sky flight trials with the Cessna Citation II research aircraft. The trials consisted of several descents and approaches at the Eelde airport near Groningen, demonstrating the TEMO (Time and Energy Managed Operations) concept developed in the Clean Sky Joint Technology Initiative research programme as part of the Systems for Green Operations (SGO) Integrated Technology Demonstrator. A TEMO descent aims to achieve an energy-managed idle-thrust continuous descent operation (CDO) while satisfying ATC time constraints, to maintain runway throughput. An optimal descent plan is calculated with an advanced on-board real-time aircraft trajectory optimisation algorithm considering forecasted weather and aircraft performance. The optimised descent plan was executed using the speed-on-elevator mode of an experimental Fly-By-Wire (FBW) system connected to the pitch servo motor of the Cessna Citation II aircraft. Several TEMO conceptual variants have been flown. It has been demonstrated that the TEMO concept enables arrival with timing errors below 10 seconds. The project was realised with the support of CONCORDE partners Universitat PolitĂšcnica de Catalunya (UPC) and PildoLabs from Barcelona, and the Royal Netherlands Meteorological Institute (KNMI).Peer ReviewedPostprint (published version

    Virtual Integration Platforms (VIP) –A Concept for Integrated and Interdisciplinary Air Transportation Research and Assessment

    Get PDF
    The paper descibes a new methodology for a holistic development of air transportation concepts. The Virtual Integration Plattform (VIP) concept is based on an IT tool chain as well as human collaborative methods to deal with complex systems. As a result the definitions of future air transportation concepts for short range "Quiet and Clean", long range "Comfortable and Clean" and individual transport "Fast and Flexible" are presente

    An aerothermodynamic design optimization framework for hypersonic vehicles

    Get PDF
    In the aviation field great interest is growing in passengers transportation at hypersonic speed. This requires, however, careful study of the enabling technologies necessary for the optimal design of hypersonic vehicles. In this framework, the present work reports on a highly integrated design environment that has been developed in order to provide an optimization loop for vehicle aerothermodynamic design. It includes modules for geometrical parametrization, automated data transfer between tools, automated execution of computational analysis codes, and design optimization methods. This optimization environment is exploited for the aerodynamic design of an unmanned hypersonic cruiser flying at M∞=8 and 30 km altitude. The original contribution of this work is mainly found in the capability of the developed optimization environment of working simultaneously on shape and topology of the aircraft. The results reported and discussed highlight interesting design capabilities, and promise extension to more challenging and realistic integrated aerothermodynamic design problems
    • 

    corecore