21,135 research outputs found

    A fuzzy approach for competency characterisation based on a work situation analysis.

    No full text
    International audienceThe purpose of this work is to give a decision support to meet requirements in competencies management. We assume that the building, the development, and the use of each competency need the concurrence of different kinds of interactions in the real work situation. The competency characteristics can be evaluated by an expert within an analysis of work situation, to get an interpretation of these interactions. In this sense, we propose a qualitative method of competency characterisation based on a formal representation of the situation. The aim of this paper is not to give all mathematical details of a fuzzy approach but rather to present how qualitative knowledge about the situation can be used to characterise associated competency

    Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays

    Full text link
    Massive black holes are key components of the assembly and evolution of cosmic structures and a number of surveys are currently on-going or planned to probe the demographics of these objects and to gain insight into the relevant physical processes. Pulsar Timing Arrays (PTAs) currently provide the only means to observe gravitational radiation from massive black hole binary systems with masses >10^7 solar masses. The whole cosmic population produces a stochastic background that could be detectable with upcoming Pulsar Timing Arrays. Sources sufficiently close and/or massive generate gravitational radiation that significantly exceeds the level of the background and could be individually resolved. We consider a wide range of massive black hole binary assembly scenarios, we investigate the distribution of the main physical parameters of the sources, such as masses and redshift, and explore the consequences for Pulsar Timing Arrays observations. Depending on the specific massive black hole population model, we estimate that on average at least one resolvable source produces timing residuals in the range ~5-50 ns. Pulsar Timing Arrays, and in particular the future Square Kilometre Array (SKA), can plausibly detect these unique systems, although the events are likely to be rare. These observations would naturally complement on the high-mass end of the massive black hole distribution function future surveys carried out by the Laser Interferometer Space Antenna (LISA)Comment: 12 pages, 10 figures, accepted for publication in MNRAS. Results revised (differences within a factor of two) after a bug in the code for generating the timing residuals has been fixe

    Close Galaxy Pairs at z = 3: A Challenge to UV Luminosity Abundance Matching

    Get PDF
    We use a sample of z~3 Lyman Break Galaxies (LBGs) to examine close pair clustering statistics in comparison to LCDM-based models of structure formation. Samples are selected by matching the LBG number density and by matching the observed LBG 3-D correlation function of LBGs over the two-halo term region. We show that UV-luminosity abundance matching cannot reproduce the observed data, but if subhalos are chosen to reproduce the observed clustering of LBGs we are able to reproduce the observed LBG pair fraction, (Nc), defined as the average number of companions per galaxy. This model suggests an over abundance of LBGs by a factor of ~5 over those observed, suggesting that only 1 in 5 halos above a fixed mass hosts a galaxy with LBG-like UV luminosity detectable via LBG selection techniques. We find a total observable close pair fraction of 23 \pm 0.6% (17.7 \pm 0.5%) using a prototypical cylinder radius in our overdense fiducial model and 8.3 \pm 0.5% (5.6 \pm 0.2%) in an abundance matched model (impurity corrected). For the matched spectroscopic slit analysis, we find Ncs = 5.1\pm0.2% (1.68\pm0.02%), the average number of companions observed serendipitously in our for fiducial slits (abundance matched), whereas the observed fraction of serendipitous spectroscopic close pairs is 4.7\pm1.5 per cent using the full LBG sample and 7.1\pm2.3% for a subsample with higher signal-to-noise ratio. We show that the standard method of halo assignment fails to reproduce the break in the LBG close pair behavior at small scale. To reconcile these discrepancies we suggest that a plausible fraction of LBGs in close pairs with lower mass than our sample experience interaction-induced enhanced star formation that boosts their luminosity sufficiently to be detected in observational sample but are not included in the abundance matched simulation sample.Comment: 18 pages, 12 figures, 1 table, published in MNRA

    Облік та аудит

    Get PDF
    corecore