1,925 research outputs found

    Fish species classification in unconstrained underwater environments based on deep learning

    Get PDF
    Underwater video and digital still cameras are rapidly being adopted by marine scientists and managers as a tool for non-destructively quantifying and measuring the relative abundance, cover and size of marine fauna and flora. Imagery recorded of fish can be time consuming and costly to process and analyze manually. For this reason, there is great interest in automatic classification, counting, and measurement of fish. Unconstrained underwater scenes are highly variable due to changes in light intensity, changes in fish orientation due to movement, a variety of background habitats which sometimes also move, and most importantly similarity in shape and patterns among fish of different species. This poses a great challenge for image/video processing techniques to accurately differentiate between classes or species of fish to perform automatic classification. We present a machine learning approach, which is suitable for solving this challenge. We demonstrate the use of a convolution neural network model in a hierarchical feature combination setup to learn species-dependent visual features of fish that are unique, yet abstract and robust against environmental and intra-and inter-species variability. This approach avoids the need for explicitly extracting features from raw images of the fish using several fragmented image processing techniques. As a result, we achieve a single and generic trained architecture with favorable performance even for sample images of fish species that have not been used in training. Using the LifeCLEF14 and LifeCLEF15 benchmark fish datasets, we have demonstrated results with a correct classification rate of more than 90%

    Ecosystem Monitoring and Port Surveillance Systems

    No full text
    International audienceIn this project, we should build up a novel system able to perform a sustainable and long term monitoring coastal marine ecosystems and enhance port surveillance capability. The outcomes will be based on the analysis, classification and the fusion of a variety of heterogeneous data collected using different sensors (hydrophones, sonars, various camera types, etc). This manuscript introduces the identified approaches and the system structure. In addition, it focuses on developed techniques and concepts to deal with several problems related to our project. The new system will address the shortcomings of traditional approaches based on measuring environmental parameters which are expensive and fail to provide adequate large-scale monitoring. More efficient monitoring will also enable improved analysis of climate change, and provide knowledge informing the civil authority's economic relationship with its coastal marine ecosystems
    • …
    corecore