1,132 research outputs found

    The Transfer of Evolved Artificial Immune System Behaviours between Small and Large Scale Robotic Platforms

    Get PDF
    This paper demonstrates that a set of behaviours evolved in simulation on a miniature robot (epuck) can be transferred to a much larger scale platform (a virtual Pioneer P3-DX) that also differs in shape, sensor type, sensor configuration and programming interface. The chosen architecture uses a reinforcement learning-assisted genetic algorithm to evolve the epuck behaviours, which are encoded as a genetic sequence. This sequence is then used by the Pioneers as part of an adaptive, idiotypic artificial immune system (AIS) control architecture. Testing in three different simulated worlds shows that the Pioneer can use these behaviours to navigate and solve object-tracking tasks successfully, as long as its adaptive AIS mechanism is in place.Comment: 12 pages, 3 figures, 2 tables, 9th International Conference on Artificial Evolution (EA 09)

    Opinions and Outlooks on Morphological Computation

    Get PDF
    Morphological Computation is based on the observation that biological systems seem to carry out relevant computations with their morphology (physical body) in order to successfully interact with their environments. This can be observed in a whole range of systems and at many different scales. It has been studied in animals – e.g., while running, the functionality of coping with impact and slight unevenness in the ground is "delivered" by the shape of the legs and the damped elasticity of the muscle-tendon system – and plants, but it has also been observed at the cellular and even at the molecular level – as seen, for example, in spontaneous self-assembly. The concept of morphological computation has served as an inspirational resource to build bio-inspired robots, design novel approaches for support systems in health care, implement computation with natural systems, but also in art and architecture. As a consequence, the field is highly interdisciplinary, which is also nicely reflected in the wide range of authors that are featured in this e-book. We have contributions from robotics, mechanical engineering, health, architecture, biology, philosophy, and others

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Opinions and Outlooks on Morphological Computation

    Get PDF

    On microelectronic self-learning cognitive chip systems

    Get PDF
    After a brief review of machine learning techniques and applications, this Ph.D. thesis examines several approaches for implementing machine learning architectures and algorithms into hardware within our laboratory. From this interdisciplinary background support, we have motivations for novel approaches that we intend to follow as an objective of innovative hardware implementations of dynamically self-reconfigurable logic for enhanced self-adaptive, self-(re)organizing and eventually self-assembling machine learning systems, while developing this new particular area of research. And after reviewing some relevant background of robotic control methods followed by most recent advanced cognitive controllers, this Ph.D. thesis suggests that amongst many well-known ways of designing operational technologies, the design methodologies of those leading-edge high-tech devices such as cognitive chips that may well lead to intelligent machines exhibiting conscious phenomena should crucially be restricted to extremely well defined constraints. Roboticists also need those as specifications to help decide upfront on otherwise infinitely free hardware/software design details. In addition and most importantly, we propose these specifications as methodological guidelines tightly related to ethics and the nowadays well-identified workings of the human body and of its psyche

    White Paper 5: Brain, Mind & Behaviour

    Get PDF
    © CSICThe study of the brain will tell us what makes us humans and how our social behavior generates. Increasing our understanding of how the brain functions and interacts with the ecosystem to interpret the world will not only help to find effective means to treat and/or cure neurological and psychiatric disorders but will also change our vision on questions pertaining to philosophy and humanities and transform other fields such as economy and law. Neurosciences research at the CSIC is already valuable and should be intensified mainly focused on the eight major challenges described in this volume

    Challenge 2: From genes & circuits to behavior

    Get PDF
    Understanding the brain from genes and circuits to behavior is a major scientific challenge. The large repertoire of cell activities supporting behavior stems from an equally diverse range of specialized cell types, from neuron to glia. To untangle mechanisms underlying brain function, elementary processes should be dissected, from the complex machinery of signaling pathways at the level of single cells and synapses, to the intricate phenomena leading to orchestrated ensemble activity and the establishment of engrams driving memory-guided behaviors. In this chapter we identify the main key tasks required to address some of the open questions in the field, and discuss on the main issues and strategies

    Analysis of Embodied and Situated Systems from an Antireductionist Perspective

    Get PDF
    The analysis of embodied and situated agents form a dynamical system perspective is often limited to a geometrical and qualitative description. However, a quantitative analysis is necessary to achieve a deep understanding of cognitive facts. The field of embodied cognition is multifaceted, and the first part of this thesis is devoted to exploring the diverse meanings proposed in the existing literature. This is a preliminary fundamental step as the creation of synthetic models requires well-founded theoretical and foundational boundaries for operationalising the concept of embodied and situated cognition in a concrete neuro-robotic model. By accepting the dynamical system view the agent is conceived as highly integrated and strictly coupled with the surrounding environment. Therefore the antireductionist framework is followed during the analysis of such systems, using chaos theory to unveil global properties and information theory to describe the complex network of interactions among the heterogeneous sub-components. In the experimental section, several evolutionary robotics experiments are discussed. This class of adaptive systems is consistent with the proposed definition of embodied and situated cognition. In fact, such neuro-robotics platforms autonomously develop a solution to a problem exploiting the continuous sensorimotor interaction with the environment. The first experiment is a stress test for chaos theory, a mathematical framework that studies erratic behaviour in low-dimensional and deterministic dynamical systems. The recorded dataset consists of the robots’ position in the environment during the execution of the task. Subsequently, the time series is projected onto a multidimensional phase space in order to study the underlying dynamic using chaotic numerical descriptors. Finally, such measures are correlated and confronted with the robots’ behavioural strategy and the performance in novel and unpredictable environments. The second experiment explores the possible applications of information-theoretic measures for the analysis of embodied and situated systems. Data is recorded from perceptual and motor neurons while robots are executing a wall-following task and pairwise estimations of the mutual information and the transfer entropy are calculated in order to create an exhaustive map of the nonlinear interactions among variables. Results show that the set of information-theoretic employed in this study unveils characteristics of the agent-environemnt interaction and the functional neural structure. This work aims at testing the explanatory power and impotence of nonlinear time series analysis applied to observables recorded from neuro-robotics embodied and situated systems
    • …
    corecore