7,580 research outputs found

    Evaluation of trackers for Pan-Tilt-Zoom Scenarios

    Full text link
    Tracking with a Pan-Tilt-Zoom (PTZ) camera has been a research topic in computer vision for many years. Compared to tracking with a still camera, the images captured with a PTZ camera are highly dynamic in nature because the camera can perform large motion resulting in quickly changing capture conditions. Furthermore, tracking with a PTZ camera involves camera control to position the camera on the target. For successful tracking and camera control, the tracker must be fast enough, or has to be able to predict accurately the next position of the target. Therefore, standard benchmarks do not allow to assess properly the quality of a tracker for the PTZ scenario. In this work, we use a virtual PTZ framework to evaluate different tracking algorithms and compare their performances. We also extend the framework to add target position prediction for the next frame, accounting for camera motion and processing delays. By doing this, we can assess if predicting can make long-term tracking more robust as it may help slower algorithms for keeping the target in the field of view of the camera. Results confirm that both speed and robustness are required for tracking under the PTZ scenario.Comment: 6 pages, 2 figures, International Conference on Pattern Recognition and Artificial Intelligence 201

    Self-Selective Correlation Ship Tracking Method for Smart Ocean System

    Full text link
    In recent years, with the development of the marine industry, navigation environment becomes more complicated. Some artificial intelligence technologies, such as computer vision, can recognize, track and count the sailing ships to ensure the maritime security and facilitates the management for Smart Ocean System. Aiming at the scaling problem and boundary effect problem of traditional correlation filtering methods, we propose a self-selective correlation filtering method based on box regression (BRCF). The proposed method mainly include: 1) A self-selective model with negative samples mining method which effectively reduces the boundary effect in strengthening the classification ability of classifier at the same time; 2) A bounding box regression method combined with a key points matching method for the scale prediction, leading to a fast and efficient calculation. The experimental results show that the proposed method can effectively deal with the problem of ship size changes and background interference. The success rates and precisions were higher than Discriminative Scale Space Tracking (DSST) by over 8 percentage points on the marine traffic dataset of our laboratory. In terms of processing speed, the proposed method is higher than DSST by nearly 22 Frames Per Second (FPS)

    Good Features to Correlate for Visual Tracking

    Full text link
    During the recent years, correlation filters have shown dominant and spectacular results for visual object tracking. The types of the features that are employed in these family of trackers significantly affect the performance of visual tracking. The ultimate goal is to utilize robust features invariant to any kind of appearance change of the object, while predicting the object location as properly as in the case of no appearance change. As the deep learning based methods have emerged, the study of learning features for specific tasks has accelerated. For instance, discriminative visual tracking methods based on deep architectures have been studied with promising performance. Nevertheless, correlation filter based (CFB) trackers confine themselves to use the pre-trained networks which are trained for object classification problem. To this end, in this manuscript the problem of learning deep fully convolutional features for the CFB visual tracking is formulated. In order to learn the proposed model, a novel and efficient backpropagation algorithm is presented based on the loss function of the network. The proposed learning framework enables the network model to be flexible for a custom design. Moreover, it alleviates the dependency on the network trained for classification. Extensive performance analysis shows the efficacy of the proposed custom design in the CFB tracking framework. By fine-tuning the convolutional parts of a state-of-the-art network and integrating this model to a CFB tracker, which is the top performing one of VOT2016, 18% increase is achieved in terms of expected average overlap, and tracking failures are decreased by 25%, while maintaining the superiority over the state-of-the-art methods in OTB-2013 and OTB-2015 tracking datasets.Comment: Accepted version of IEEE Transactions on Image Processin

    Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Tracking

    Get PDF
    With efficient appearance learning models, Discriminative Correlation Filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.e., spatial boundary effect and temporal filter degradation. To mitigate these challenges, we propose a new DCF-based tracking method. The key innovations of the proposed method include adaptive spatial feature selection and temporal consistent constraints, with which the new tracker enables joint spatial-temporal filter learning in a lower dimensional discriminative manifold. More specifically, we apply structured spatial sparsity constraints to multi-channel filers. Consequently, the process of learning spatial filters can be approximated by the lasso regularisation. To encourage temporal consistency, the filter model is restricted to lie around its historical value and updated locally to preserve the global structure in the manifold. Last, a unified optimisation framework is proposed to jointly select temporal consistency preserving spatial features and learn discriminative filters with the augmented Lagrangian method. Qualitative and quantitative evaluations have been conducted on a number of well-known benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123 and VOT2018. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art approaches

    Large Margin Object Tracking with Circulant Feature Maps

    Full text link
    Structured output support vector machine (SVM) based tracking algorithms have shown favorable performance recently. Nonetheless, the time-consuming candidate sampling and complex optimization limit their real-time applications. In this paper, we propose a novel large margin object tracking method which absorbs the strong discriminative ability from structured output SVM and speeds up by the correlation filter algorithm significantly. Secondly, a multimodal target detection technique is proposed to improve the target localization precision and prevent model drift introduced by similar objects or background noise. Thirdly, we exploit the feedback from high-confidence tracking results to avoid the model corruption problem. We implement two versions of the proposed tracker with the representations from both conventional hand-crafted and deep convolution neural networks (CNNs) based features to validate the strong compatibility of the algorithm. The experimental results demonstrate that the proposed tracker performs superiorly against several state-of-the-art algorithms on the challenging benchmark sequences while runs at speed in excess of 80 frames per second. The source code and experimental results will be made publicly available

    Staple: Complementary Learners for Real-Time Tracking

    Full text link
    Correlation Filter-based trackers have recently achieved excellent performance, showing great robustness to challenging situations exhibiting motion blur and illumination changes. However, since the model that they learn depends strongly on the spatial layout of the tracked object, they are notoriously sensitive to deformation. Models based on colour statistics have complementary traits: they cope well with variation in shape, but suffer when illumination is not consistent throughout a sequence. Moreover, colour distributions alone can be insufficiently discriminative. In this paper, we show that a simple tracker combining complementary cues in a ridge regression framework can operate faster than 80 FPS and outperform not only all entries in the popular VOT14 competition, but also recent and far more sophisticated trackers according to multiple benchmarks.Comment: To appear in CVPR 201
    • …
    corecore