1,939 research outputs found

    Enhanced tracking and recognition of moving objects by reasoning about spatio-temporal continuity.

    Get PDF
    A framework for the logical and statistical analysis and annotation of dynamic scenes containing occlusion and other uncertainties is presented. This framework consists of three elements; an object tracker module, an object recognition/classification module and a logical consistency, ambiguity and error reasoning engine. The principle behind the object tracker and object recognition modules is to reduce error by increasing ambiguity (by merging objects in close proximity and presenting multiple hypotheses). The reasoning engine deals with error, ambiguity and occlusion in a unified framework to produce a hypothesis that satisfies fundamental constraints on the spatio-temporal continuity of objects. Our algorithm finds a globally consistent model of an extended video sequence that is maximally supported by a voting function based on the output of a statistical classifier. The system results in an annotation that is significantly more accurate than what would be obtained by frame-by-frame evaluation of the classifier output. The framework has been implemented and applied successfully to the analysis of team sports with a single camera. Key words: Visua

    How Is a Moving Target Continuously Tracked Behind Occluding Cover?

    Full text link
    Office of Naval Research (N00014-95-1-0657, N00014-95-1-0409

    Automatic classification of abandoned objects for surveillance of public premises

    Full text link
    One of the core components of any visual surveillance system is object classification, where detected objects are classified into different categories of interest. Although in airports or train stations, abandoned objects are mainly luggage or trolleys, none of the existing works in the literature have attempted to classify or recognize trolleys. In this paper, we analyzed and classified images of trolley(s), bag(s), single person(s), and group(s) of people by using various shape features with a number of uncluttered and cluttered images and applied multiframe integration to overcome partial occlusions and obtain better recognition results. We also tested the proposed techniques on data extracted from a wellrecognized and recent data set, PETS 2007 benchmark data set[16]. Our experimental results show that the features extracted are invariant to data set and classification scheme chosen. For our four-class object recognition problem, we achieved an average recognition accuracy of 70%. © 2008 IEEE
    • …
    corecore