1,722 research outputs found

    Efficient Version-Space Reduction for Visual Tracking

    Full text link
    Discrminative trackers, employ a classification approach to separate the target from its background. To cope with variations of the target shape and appearance, the classifier is updated online with different samples of the target and the background. Sample selection, labeling and updating the classifier is prone to various sources of errors that drift the tracker. We introduce the use of an efficient version space shrinking strategy to reduce the labeling errors and enhance its sampling strategy by measuring the uncertainty of the tracker about the samples. The proposed tracker, utilize an ensemble of classifiers that represents different hypotheses about the target, diversify them using boosting to provide a larger and more consistent coverage of the version-space and tune the classifiers' weights in voting. The proposed system adjusts the model update rate by promoting the co-training of the short-memory ensemble with a long-memory oracle. The proposed tracker outperformed state-of-the-art trackers on different sequences bearing various tracking challenges.Comment: CRV'17 Conferenc

    Efficient Asymmetric Co-Tracking using Uncertainty Sampling

    Full text link
    Adaptive tracking-by-detection approaches are popular for tracking arbitrary objects. They treat the tracking problem as a classification task and use online learning techniques to update the object model. However, these approaches are heavily invested in the efficiency and effectiveness of their detectors. Evaluating a massive number of samples for each frame (e.g., obtained by a sliding window) forces the detector to trade the accuracy in favor of speed. Furthermore, misclassification of borderline samples in the detector introduce accumulating errors in tracking. In this study, we propose a co-tracking based on the efficient cooperation of two detectors: a rapid adaptive exemplar-based detector and another more sophisticated but slower detector with a long-term memory. The sampling labeling and co-learning of the detectors are conducted by an uncertainty sampling unit, which improves the speed and accuracy of the system. We also introduce a budgeting mechanism which prevents the unbounded growth in the number of examples in the first detector to maintain its rapid response. Experiments demonstrate the efficiency and effectiveness of the proposed tracker against its baselines and its superior performance against state-of-the-art trackers on various benchmark videos.Comment: Submitted to IEEE ICSIPA'201

    Spectrum cartography techniques, challenges, opportunities, and applications: A survey

    Get PDF
    The spectrum cartography finds applications in several areas such as cognitive radios, spectrum aware communications, machine-type communications, Internet of Things, connected vehicles, wireless sensor networks, and radio frequency management systems, etc. This paper presents a survey on state-of-the-art of spectrum cartography techniques for the construction of various radio environment maps (REMs). Following a brief overview on spectrum cartography, various techniques considered to construct the REMs such as channel gain map, power spectral density map, power map, spectrum map, power propagation map, radio frequency map, and interference map are reviewed. In this paper, we compare the performance of the different spectrum cartography methods in terms of mean absolute error, mean square error, normalized mean square error, and root mean square error. The information presented in this paper aims to serve as a practical reference guide for various spectrum cartography methods for constructing different REMs. Finally, some of the open issues and challenges for future research and development are discussed.publishedVersio
    • …
    corecore