3 research outputs found

    Real-time Tracking Based on Neuromrophic Vision

    Full text link
    Real-time tracking is an important problem in computer vision in which most methods are based on the conventional cameras. Neuromorphic vision is a concept defined by incorporating neuromorphic vision sensors such as silicon retinas in vision processing system. With the development of the silicon technology, asynchronous event-based silicon retinas that mimic neuro-biological architectures has been developed in recent years. In this work, we combine the vision tracking algorithm of computer vision with the information encoding mechanism of event-based sensors which is inspired from the neural rate coding mechanism. The real-time tracking of single object with the advantage of high speed of 100 time bins per second is successfully realized. Our method demonstrates that the computer vision methods could be used for the neuromorphic vision processing and we can realize fast real-time tracking using neuromorphic vision sensors compare to the conventional camera

    Adaptive map alignment in the superior colliculus of the barn owl: a neuromorphic implementation

    Get PDF
    Adaptation is one of the basic phenomena of biology, while adaptability is an important feature for neural network. Young barn owl can well adapt its visual and auditory integration to the environmental change, such as prism wearing. At first, a mathematical model is introduced by the related study in biological experiment. The model well explained the mechanism of the sensory map realignment through axongenesis and synaptogenesis. Simulation results of this model are consistent with the biological data. Thereafter, to test the model’s application in hardware, the model is implemented into a robot. Visual and auditory signals are acquired by the sensors of the robot and transferred back to PC through bluetooth. Results of the robot experiment are presented, which shows the SC model allowing the robot to adjust visual and auditory integration to counteract the effects of a prism. Finally, based on the model, a silicon Superior Colliculus is designed in VLSI circuit and fabricated. Performance of the fabricated chip has shown the synaptogenesis and axogenesis can be emulated in VLSI circuit. The circuit of neural model provides a new method to update signals and reconfigure the switch network (the chip has an automatic reconfigurable network which is used to correct the disparity between signals). The chip is also the first Superior Colliculus VLSI circuit to emulate the sensory map realignment
    corecore