1,573,948 research outputs found

    Design, implementation and evaluation of a real-time P300-based brain-computer interface system

    Get PDF
    We present a new end-to-end brain-computer interface system based on electroencephalography (EEG). Our system exploits the P300 signal in the brain, a positive deflection in event-related potentials, caused by rare events. P300 can be used for various tasks, perhaps the most well-known being a spelling device. We have designed a flexible visual stimulus mechanism that can be adapted to user preferences and developed and implemented EEG signal processing, learning and classification algorithms. Our classifier is based on Bayes linear discriminant analysis, in which we have explored various choices and improvements. We have designed data collection experiments for offline and online decision-making and have proposed modifications in the stimulus and decision-making procedure to increase online efficiency. We have evaluated the performance of our system on 8 healthy subjects on a spelling task and have observed that our system achieves higher average speed than state-of-the-art systems reported in the literature for a given classification accuracy

    Design and implementation of a real-time autonomous navigation system applied to lego robots

    Get PDF
    Teaching theoretical concepts of a real-time autonomous robot system may be a challenging task without real hardware support. The paper discusses the application of the Lego Robot for teaching multi interdisciplinary subjects to Mechatronics students. A real-time mobile robot system with perception using sensors, path planning algorithm, PID controller is used as the case to demonstrate the teaching methodology. The novelties are introduced compared to classical robotic classes: (i) the adoption of a project-based learning approach as teaching methodology; (ii) an effective real-time autonomous navigation approach for the mobile robot. However, the extendibility and applicability of the presented approach are not limited to only the educational purpose

    Active Noise Control with Sampled-Data Filtered-x Adaptive Algorithm

    Full text link
    Analysis and design of filtered-x adaptive algorithms are conventionally done by assuming that the transfer function in the secondary path is a discrete-time system. However, in real systems such as active noise control, the secondary path is a continuous-time system. Therefore, such a system should be analyzed and designed as a hybrid system including discrete- and continuous- time systems and AD/DA devices. In this article, we propose a hybrid design taking account of continuous-time behavior of the secondary path via lifting (continuous-time polyphase decomposition) technique in sampled-data control theory
    corecore