85,965 research outputs found

    Simultaneous real-time visible and infrared video with single-pixel detectors

    Get PDF
    Conventional cameras rely upon a pixelated sensor to provide spatial resolution. An alternative approach replaces the sensor with a pixelated transmission mask encoded with a series of binary patterns. Combining knowledge of the series of patterns and the associated filtered intensities, measured by single-pixel detectors, allows an image to be deduced through data inversion. In this work we extend the concept of a ‘single-pixel camera’ to provide continuous real-time video at 10 Hz , simultaneously in the visible and short-wave infrared, using an efficient computer algorithm. We demonstrate our camera for imaging through smoke, through a tinted screen, whilst performing compressive sampling and recovering high-resolution detail by arbitrarily controlling the pixel-binning of the masks. We anticipate real-time single-pixel video cameras to have considerable importance where pixelated sensors are limited, allowing for low-cost, non-visible imaging systems in applications such as night-vision, gas sensing and medical diagnostics

    Chronic infection: punctuated interpenetration and pathogen virulence

    Get PDF
    We apply an information dynamics formalism to the Levens and Lewontin vision of biological interpenetration between a 'cognitive condensation' including immune function embedded in social and cultural structure on the one hand, and an established, highly adaptive, parasite population on the other. We iterate the argument, beginning with direct interaction between cognitive condensation and pathogen, then extend the analysis to second order 'mutator' mechanisms inherent both to immune function and to certain forms of rapid pathogen antigenic variability. The methodology, based on the Large Deviations Program of applied probability, produces synergistic cognitive/adaptive 'learning plateaus' that represent stages of chronic infection, and, for human populations, is able to encompass the fundamental biological reality of culture omitted by other approaches. We conclude that, for 'evolution machine' pathogens like HIV and malaria, simplistic magic bullet 'medical' drug, vaccine, or behavior modification interventions which do not address the critical context of overall living and working conditions may constitute selection pressures triggering adaptations in life history strategy resulting in marked increase of pathogen virulenc

    Computer-supported collaborative inquiry learning and classroom scripts

    Get PDF
    This study examined the influence of classroom-script structure (high vs. low) during computer-supported collaborative inquiry learning on help-seeking processes and learning gains in 54 student pairs in secondary science education. Screen- and audio-capturing videos were analysed according to a model of the help-seeking process. Results show that the structure of the classroom script substantially affects patterns of student help seeking and learning gain in the classroom. Overall, students in the high-structured classroom-script condition sought less help but learnt more than those in the low-structured classroom-script condition

    Knowledge-based vision and simple visual machines

    Get PDF
    The vast majority of work in machine vision emphasizes the representation of perceived objects and events: it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by artificial evolution rather than traditional engineering design techniques, and note that the task of identifying internal representations within such systems is made difficult by the lack of an operational definition of representation at the causal mechanistic level. Consequently, we question the nature and indeed the existence of representations posited to be used within natural vision systems (i.e. animals). We conclude that representations argued for on a priori grounds by external observers of a particular vision system may well be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, applying the knowledge-based vision approach in the understanding of evolved systems (machines or animals) may well lead to theories and models that are internally consistent, computationally plausible, and entirely wrong

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)

    Discovering learning processes using inductive miner: A case study with learning management systems (LMSs)

    Get PDF
    Resumen tomado de la publicaciónDescubriendo procesos de aprendizaje aplicando Inductive Miner: un estudio de caso en Learning Management Systems (LMSs). Antecedentes: en la minería de procesos con datos educativos se utilizan diferentes algoritmos para descubrir modelos, sobremanera el Alpha Miner, el Heuristic Miner y el Evolutionary Tree Miner. En este trabajo proponemos la implementación de un nuevo algoritmo en datos educativos, el denominado Inductive Miner. Método: hemos utilizado datos de interacción de 101 estudiantes universitarios en una asignatura de grado desarrollada en la plataforma Moodle 2.0. Una vez prepocesados se ha realizado la minería de procesos sobre 21.629 eventos para descubrir los modelos que generan los diferentes algoritmos y comparar sus medidas de ajuste, precisión, simplicidad y generalización. Resultados: en las pruebas realizadas en nuestro conjunto de datos el algoritmo Inductive Miner es el que obtiene mejores resultados, especialmente para el valor de ajuste, criterio de mayor relevancia en lo que respecta al descubrimiento de modelos. Además, cuando ponderamos con pesos las diferentes métricas seguimos obteniendo la mejor medida general con el Inductive Miner. Conclusiones: la implementación de Inductive Miner en datos educativos es una nueva aplicación que, además de obtener mejores resultados que otros algoritmos con nuestro conjunto de datos, proporciona modelos válidos e interpretables en términos educativos.Universidad de Oviedo. Biblioteca de Psicología; Plaza Feijoo, s/n.; 33003 Oviedo; Tel. +34985104146; Fax +34985104126; [email protected]
    • …
    corecore