9,172 research outputs found

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    Business Process Redesign in the Perioperative Process: A Case Perspective for Digital Transformation

    Get PDF
    This case study investigates business process redesign within the perioperative process as a method to achieve digital transformation. Specific perioperative sub-processes are targeted for re-design and digitalization, which yield improvement. Based on a 184-month longitudinal study of a large 1,157 registered-bed academic medical center, the observed effects are viewed through a lens of information technology (IT) impact on core capabilities and core strategy to yield a digital transformation framework that supports patient-centric improvement across perioperative sub-processes. This research identifies existing limitations, potential capabilities, and subsequent contextual understanding to minimize perioperative process complexity, target opportunity for improvement, and ultimately yield improved capabilities. Dynamic technological activities of analysis, evaluation, and synthesis applied to specific perioperative patient-centric data collected within integrated hospital information systems yield the organizational resource for process management and control. Conclusions include theoretical and practical implications as well as study limitations

    Finite element model set-up of colorectal tissue for analyzing surgical scenarios

    Get PDF
    Finite Element Analysis (FEA) has gained an extensive application in the medical field, such as soft tissues simulations. In particular, colorectal simulations can be used to understand the interaction with the surrounding tissues, or with instruments used in surgical procedures. Although several works have been introduced considering small displacements, as a result of the forces exerted on adjacent tissues, FEA applied to colorectal surgical scenarios is still a challenge. Therefore, this work aims to provide a sensitivity analysis on three geometric models, taking in mind different bioengineering tasks. In this way, a set of simulations has been performed using three mechanical models named Linear Elastic, Hyper-Elastic with a Mooney-Rivlin material model, and Hyper-Elastic with a YEOH material model

    3D computerized model for measuring strain and displacement of the brachial plexus following placement of reverse shoulder prosthesis

    Get PDF
    The aim of the present study was to develop a method for three-dimensional (3D) reconstruction of the brachial plexus to study its morphology and to calculate strain and displacement in relation to changed nerve position. The brachial plexus was finely dissected and injected with contrast medium and leaden markers were implanted into the nerves at predefined places. A reverse shoulder prosthesis was inserted in a cadaveric specimen what induced positional change in the upper limb nerves. Computed tomography (CT) was performed before and after this surgical intervention. The computer assisted image processing package Mimics (R) was used to reconstruct the pre- and postoperative brachial plexus in 3D. The results show that the current interactive model is a realistic and detailed representation of the specimen used, which allows 3D study of the brachial plexus in different configurations. The model estimated strains up to 15.3% and 19.3% for the lateral and the medial root of the median nerve as a consequence of placing a reverse shoulder prosthesis. Furthermore, the model succeeded in calculating the displacement of the brachial plexus by tracking each implanted lead marker. The presented brachial plexus 3D model currently can be used in vitro for cadaver biomechanical analyses of nerve movement to improve diagnosis and treatment of peripheral neuropathies. The model can also be applied to study the exact location of the plexus in unusual upper limb positions like during axillary radiation therapy and it is a potential tool to optimize the approaches of brachial plexus anesthetic blocks

    Aesthetic restoration in maxillo-mandibular malformations: the role of genioplasty

    Get PDF
    Aim: The aim of this study was to determinate how orthognatic surgery aids to cure many skull and face abnormalities and to help re-establishing the correct occlusive relation thanks to the repositioning of the maxillo-mandibular skeleton basis. Methods: The study included 183 male patients and 338 female patients, with an average age of 23 years. The sample series was divided according to specific pathologies. All patients underwent surgical procedures and the therapeutic strategy was determined based on the anomalies presented. Results: 113 patients had a II class dental skeletal occlusion, 180 patients had a III class dental-skeletal occlusion and 222 patients had skull-facial abnormalities. 5 patients underwent only a genioplasty, 82 patients underwent a genioplasty associated with BSSO, 175 patients underwent a genioplasty associated with Le Fort I osteotomy and the remaining 253 patients underwent a genioplasty associated with BSSO and Le Fort I osteotomy. Conclusion: The experience shows that genioplasty has been successfully introduced in orthognathic surgical therapeutic procedures, for dental-skeleton abnormalities and mandibular asymmetries treatment. In recent years, the evolution of computer systems has allowed an accurate assessment and programming, by means of the three-dimensional display, which are of great help in the course of diagnosis and evaluation of the displacements to be carried out, in order to obtain optimal aesthetic results

    Magnetic Resonance Imaging with Diffuse Weighted Imaging and Computed Tomography with Intravenous Contrast in Staging of Disseminated Ovarian, Stomach, Colorectal Cancer

    Full text link
    The aim of the research. Development and implementation of new methods for pre-operative staging of advanced ovarian, gastric and colorectal cancer to improve patient selection for cytoreductive surgery and increase its radicality.Materials and methods. Data from 120 patients with advanced ovarian cancer, 28 with advanced gastric cancer and 119 with advanced colorectal cancer were analyzed. Preoperative detection of the incidence of peritoneal carcinoma and the possibility of surgery in radical or cytoreductive volume performed by CT with intravenous contrast (72 patients with ovarian cancer, 17 patients with gastric cancer, and 69 patients with colorectal cancer), and MR T1 and T2, contrast-enhanced T1, and diffuse-weighted sequences (48 patients with ovarian cancer, 11 patients with gastric cancer, and 50 patients with colorectal cancer). Subsequently, preoperative and intraoperative assessment of the prevalence of the tumour process with peritoneal carcinoma index (PCI) by Sugarbaker was performed.Results. A statistically significant increase in the informativeness of the preoperative assessment of the incidence of tumour process in peritoneum and the presence of distant metastases using DWI / MRI compared with CT with intravenous contrast was determined. Patients from all groups were categorized according to the completeness index of cytoreduction achieved by preoperative staging and patient selection using DWI / MRI and CT. The use of DWI / MRI allowed to significantly reduce the number of suboptimal and non-optimal cytoreductive interventions.Conclusions. DWI / MRI has made it possible to significantly improve the preoperative incidence of advanced ovarian, gastric, and colorectal cancer compared to CT, predict the radicality of future surgery, and detect inoperable cases

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios

    Get PDF
    Este número da revista Cadernos de Estudos Sociais estava em organização quando fomos colhidos pela morte do sociólogo Ernesto Laclau. Seu falecimento em 13 de abril de 2014 surpreendeu a todos, e particularmente ao editor Joanildo Burity, que foi seu orientando de doutorado na University of Essex, Inglaterra, e que recentemente o trouxe à Fundação Joaquim Nabuco para uma palestra, permitindo que muitos pudessem dialogar com um dos grandes intelectuais latinoamericanos contemporâneos. Assim, buscamos fazer uma homenagem ao sociólogo argentino publicando uma entrevista inédita concedida durante a sua passagem pelo Recife, em 2013, encerrando essa revista com uma sessão especial sobre a sua trajetória

    A Dedicated Tool for Presurgical Mapping of Brain Tumors and Mixed-Reality Navigation During Neurosurgery

    Get PDF
    Brain tumor surgery requires a delicate tradeoff between complete removal of neoplastic tissue while minimizing loss of brain function. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) have emerged as valuable tools for non-invasive assessment of human brain function and are now used to determine brain regions that should be spared to prevent functional impairment after surgery. However, image analysis requires different software packages, mainly developed for research purposes and often difficult to use in a clinical setting, preventing large-scale diffusion of presurgical mapping. We developed a specialized software able to implement an automatic analysis of multimodal MRI presurgical mapping in a single application and to transfer the results to the neuronavigator. Moreover, the imaging results are integrated in a commercially available wearable device using an optimized mixed-reality approach, automatically anchoring 3-dimensional holograms obtained from MRI with the physical head of the patient. This will allow the surgeon to virtually explore deeper tissue layers highlighting critical brain structures that need to be preserved, while retaining the natural oculo-manual coordination. The enhanced ergonomics of this procedure will significantly improve accuracy and safety of the surgery, with large expected benefits for health care systems and related industrial investors
    corecore