25 research outputs found

    Detecting the Unexpected via Image Resynthesis

    Full text link
    Classical semantic segmentation methods, including the recent deep learning ones, assume that all classes observed at test time have been seen during training. In this paper, we tackle the more realistic scenario where unexpected objects of unknown classes can appear at test time. The main trends in this area either leverage the notion of prediction uncertainty to flag the regions with low confidence as unknown, or rely on autoencoders and highlight poorly-decoded regions. Having observed that, in both cases, the detected regions typically do not correspond to unexpected objects, in this paper, we introduce a drastically different strategy: It relies on the intuition that the network will produce spurious labels in regions depicting unexpected objects. Therefore, resynthesizing the image from the resulting semantic map will yield significant appearance differences with respect to the input image. In other words, we translate the problem of detecting unknown classes to one of identifying poorly-resynthesized image regions. We show that this outperforms both uncertainty- and autoencoder-based methods

    Anomaly Detection in Autonomous Driving: A Survey

    Full text link
    Nowadays, there are outstanding strides towards a future with autonomous vehicles on our roads. While the perception of autonomous vehicles performs well under closed-set conditions, they still struggle to handle the unexpected. This survey provides an extensive overview of anomaly detection techniques based on camera, lidar, radar, multimodal and abstract object level data. We provide a systematization including detection approach, corner case level, ability for an online application, and further attributes. We outline the state-of-the-art and point out current research gaps.Comment: Daniel Bogdoll and Maximilian Nitsche contributed equally. Accepted for publication at CVPR 2022 WAD worksho

    Detecting Road Obstacles by Erasing Them

    Full text link
    Vehicles can encounter a myriad of obstacles on the road, and it is not feasible to record them all beforehand to train a detector. Our method selects image patches and inpaints them with the surrounding road texture, which tends to remove obstacles from those patches. It them uses a network trained to recognize discrepancies between the original patch and the inpainted one, which signals an erased obstacle. We also contribute a new dataset for monocular road obstacle detection, and show that our approach outperforms the state-of-the-art methods on both our new dataset and the standard Fishyscapes Lost & Found benchmark

    Dynamic suspension control using active look-a-head suspension

    Get PDF

    Unsupervised detection of security threats in cyberphysical system and IoT devices based on power fingerprints and RBM autoencoders

    Get PDF
    Aim: A major problem in the Internet of Things (IoT) and Cyber-Physical System (CPS) devices is the detection of security threats in an efficient manner. Several recent incidents confirm that despite of the existing security solutions, security threats (e.g., malware and availability attacks) can still find their ways to such devices causing severe damages. Methods: In this paper, we propose a methodology that leverages the power consumption of wireless devices and Restricted Boltzmann Machine (RBM) Autoencoders (AE) to build a model that makes them more robust to the presence of security threats. The method consists of two stages: (i) Feature Extraction where stacked RBM AE and Principal Component Analysis (PCA) are used to extract features vector based on AE’s reconstruction errors. (ii) Classifier where One-Class Support Vector Machine (OC-SVM) is trained to perform the detection task. Results: The validation of the methodology is performed on real measurement datasets and covers a wide range of security threats (namely, malware, DDOS, and cryptojacking). The obtained results show good potential throughout the five datasets and prove that AEs’ reconstruction error can be used as a good discriminating feature. The obtained detection accuracy surpasses previously reported techniques, where it reaches up to ∼ 98% in most of scenarios. Conclusion: The performance of the proposed methodology shows a good generalization for detecting different security threats, and, hence, confirms the usefulness and applicability of the proposed approach

    Stochastic Optimization and Machine Learning Modeling for Wireless Networking

    Get PDF
    In the last years, the telecommunications industry has seen an increasing interest in the development of advanced solutions that enable communicating nodes to exchange large amounts of data. Indeed, well-known applications such as VoIP, audio streaming, video on demand, real-time surveillance systems, safety vehicular requirements, and remote computing have increased the demand for the efficient generation, utilization, management and communication of larger and larger data quantities. New transmission technologies have been developed to permit more efficient and faster data exchanges, including multiple input multiple output architectures or software defined networking: as an example, the next generation of mobile communication, known as 5G, is expected to provide data rates of tens of megabits per second for tens of thousands of users and only 1 ms latency. In order to achieve such demanding performance, these systems need to effectively model the considerable level of uncertainty related to fading transmission channels, interference, or the presence of noise in the data. In this thesis, we will present how different approaches can be adopted to model these kinds of scenarios, focusing on wireless networking applications. In particular, the first part of this work will show how stochastic optimization models can be exploited to design energy management policies for wireless sensor networks. Traditionally, transmission policies are designed to reduce the total amount of energy drawn from the batteries of the devices; here, we consider energy harvesting wireless sensor networks, in which each device is able to scavenge energy from the environment and charge its battery with it. In this case, the goal of the optimal transmission policies is to efficiently manage the energy harvested from the environment, avoiding both energy outage (i.e., no residual energy in a battery) and energy overflow (i.e., the impossibility to store scavenged energy when the battery is already full). In the second part of this work, we will explore the adoption of machine learning techniques to tackle a number of common wireless networking problems. These algorithms are able to learn from and make predictions on data, avoiding the need to follow limited static program instructions: models are built from sample inputs, thus allowing for data-driven predictions and decisions. In particular, we will first design an on-the-fly prediction algorithm for the expected time of arrival related to WiFi transmissions. This predictor only exploits those network parameters available at each receiving node and does not require additional knowledge from the transmitter, hence it can be deployed without modifying existing standard transmission protocols. Secondly, we will investigate the usage of particular neural network instances known as autoencoders for the compression of biosignals, such as electrocardiography and photo plethysmographic sequences. A lightweight lossy compressor will be designed, able to be deployed in wearable battery-equipped devices with limited computational power. Thirdly, we will propose a predictor for the long-term channel gain in a wireless network. Differently from other works in the literature, such predictor will only exploit past channel samples, without resorting to additional information such as GPS data. An accurate estimation of this gain would enable to, e.g., efficiently allocate resources and foretell future handover procedures. Finally, although not strictly related to wireless networking scenarios, we will show how deep learning techniques can be applied to the field of autonomous driving. This final section will deal with state-of-the-art machine learning solutions, proving how these techniques are able to considerably overcome the performance given by traditional approaches

    Advanced Operation and Maintenance in Solar Plants, Wind Farms and Microgrids

    Get PDF
    This reprint presents advances in operation and maintenance in solar plants, wind farms and microgrids. This compendium of scientific articles will help clarify the current advances in this subject, so it is expected that it will please the reader
    corecore