1,613 research outputs found

    A Real-Time Sliding Mode Control for a Wind Energy System Based on a Doubly Fed Induction Generator

    Get PDF
    In this paper, a real time sliding mode control scheme for a variable speed wind turbine that incorporates a doubly feed induction generator is described. In this design, the so-called vector control theory is applied, in order to simplify the system electrical equations. The proposed control scheme involves a low computational cost and therefore can be implemented in real-time applications using a low cost Digital Signal Processor (DSP). The stability analysis of the proposed sliding mode controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. A new experimental platform has been designed and constructed in order to analyze the real-time performance of the proposed controller in a real system. Finally, the experimental validation carried out in the experimental platform shows; on the one hand that the proposed controller provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect to the uncertainties that usually appear in the real systems.The authors are very grateful to the Basque Government by the support of this work through the project S-PE12UN015 and S-PE13UN039 and to the UPV/EHU by its support through the projects GIU13/41 and UFI11/07

    Flux observer algorithms for direct torque control of brushless doubly-fed reluctance machines

    Get PDF
    Direct Torque Control (DTC) has been extensively researched and applied to most AC machines during the last two decades. Its first application to the Brushless Doubly-Fed Reluctance Machine (BDFRM), a promising cost-effective candidate for drive and generator systems with limited variable speed ranges (such as large pumps or wind turbines), has only been reported a few years ago. However, the original DTC scheme has experienced flux estimation problems and compromised performance under the maximum torque per inverter ampere (MTPIA) conditions. This deficiency at low current and torque levels may be overcome and much higher accuracy achieved by alternative estimation approaches discussed in this paper using Kalman Filter (KF) and/or Sliding Mode Observer (SMO). Computer simulations accounting for real-time constraints (e.g. measurement noise, transducer DC offset etc.) have produced realistic results similar to those one would expect from an experimental setup

    Experimental Validation of a Marine Current Turbine Simulator: Application to a Permanent Magnet Synchronous Generator-Based System Second-Order Sliding Mode Control

    Get PDF
    This paper deals with the experimental validation of a Matlab-Simulink simulation tool of marine current turbine (MCT) systems. The developed simulator is intended to be used as a sizing and site evaluation tool for MCT installations. For that purpose, the simulator is evaluated within the context of speed control of a permanent magnet synchronous generatorbased (PMSG) MCT. To increase the generated power, and therefore the efficiency of an MCT, a nonlinear controller has been proposed. PMSG has been already considered for similar applications, particularly wind turbine systems using mainly PI controllers. However, such kinds of controllers do not adequately handle some of tidal resource characteristics such as turbulence and swell effects. Moreover, PMSG parameter variations should be accounted for. Therefore, a robust nonlinear control strategy, namely second-order sliding mode control, is proposed. The proposed control strategy is inserted in the simulator that accounts for the resource and the marine turbine models. Simulations using tidal current data from Raz de Sein (Brittany, France) and experiments on a 7.5-kW real-time simulator are carried out for the validation of the simulator.Thèse financée par Brest Métropole Océan

    Experimental Validation of a Marine Current Turbine Simulator: Application to a Permanent Magnet Synchronous Generator-Based System Second-Order Sliding Mode Control

    Get PDF
    This paper deals with the experimental validation of a Matlab-Simulink simulation tool of marine current turbine (MCT) systems. The developed simulator is intended to be used as a sizing and site evaluation tool for MCT installations. For that purpose, the simulator is evaluated within the context of speed control of a permanent magnet synchronous generatorbased (PMSG) MCT. To increase the generated power, and therefore the efficiency of an MCT, a nonlinear controller has been proposed. PMSG has been already considered for similar applications, particularly wind turbine systems using mainly PI controllers. However, such kinds of controllers do not adequately handle some of tidal resource characteristics such as turbulence and swell effects. Moreover, PMSG parameter variations should be accounted for. Therefore, a robust nonlinear control strategy, namely second-order sliding mode control, is proposed. The proposed control strategy is inserted in the simulator that accounts for the resource and the marine turbine models. Simulations using tidal current data from Raz de Sein (Brittany, France) and experiments on a 7.5-kW real-time simulator are carried out for the validation of the simulator.Thèse financée par Brest Métropole Océan

    Modeling and Lyapunov-designed based on adaptive gain sliding mode control for wind turbines

    Get PDF
    In this paper, modeling and the Lyapunov-designed control approach are studied for the Wind Energy Conversion Systems (WECS). The objective of this study is to ensure the maximum energy production of a WECS while reducing the mechanical stress on the shafts (turbine and generator). Furthermore, the proposed control strategy aims to optimize the wind energy captured by the wind turbine operating under rating wind speed, using an Adaptive Gain Sliding Mode Control (AG-SMC). The adaptation for the sliding gain and the torque estimation are carried out using the sliding surface as an improved solution that handles the conventional sliding mode control. Furthermore, the resultant WECS control policy is relatively simple, meaning the online computational cost and time are considerably reduced. Time-domain simulation studies are performed to discuss the effectiveness of the proposed control strateg

    Fuzzy second order sliding mode control of a unified power flow controller

    Get PDF
    Purpose. This paper presents an advanced control scheme based on fuzzy logic and second order sliding mode of a unified power flow controller. This controller offers advantages in terms of static and dynamic operation of the power system such as the control law is synthesized using three types of controllers: proportional integral, and sliding mode controller and Fuzzy logic second order sliding mode controller. Their respective performances are compared in terms of reference tracking, sensitivity to perturbations and robustness. We have to study the problem of controlling power in electric system by UPFC. The simulation results show the effectiveness of the proposed method especiallyin chattering-free behavior, response to sudden load variations and robustness. All the simulations for the above work have been carried out using MATLAB / Simulink. Various simulations have given very satisfactory results and we have successfully improved the real and reactive power flows on a transmission lineas well as to regulate voltage at the bus where it is connected, the studies and illustrate the effectiveness and capability of UPFC in improving power.В настоящей статье представлена усовершенствованная схема управления, основанная на нечеткой логике и режиме скольжения второго порядка унифицированного контроллера потока мощности. Данный контроллер обладает преимуществами с точки зрения статической и динамической работы энергосистемы, например, закон управления синтезируется с использованием трех типов контроллеров: пропорционально-интегрального, контроллера скользящего режима и контроллера скользящего режима нечеткой логики второго порядка. Их соответствующие характеристики сравниваются с точки зрения отслеживания эталонов, чувствительности к возмущениям и надежности. Необходимо изучить проблему управления мощностью в энергосистеме с помощью унифицированного контроллера потока мощности (UPFC). Результаты моделирования показывают эффективность предложенного метода, особенно в отношении отсутствия вибрации, реакции на внезапные изменения нагрузки и устойчивости. Все расчеты для вышеуказанной работы были выполнены с использованием MATLAB/Simulink. Различные расчетные исследования дали весьма удовлетворительные результаты, и мы успешно улучшили потоки реальной и реактивной мощности на линии электропередачи, а также регулирование напряжения на шине, к которой она подключена, что позволяет изучить и проиллюстрировать эффективность и возможности UPFC для увеличения мощности

    Improved direct torque control using Kalman filter: application to a doubly-fed machine

    Get PDF
    Direct Torque Control (DTC) has been extensively researched and applied during the last two decades. However, it has only first been applied to the Brushless Doubly Fed Reluctance Machine (BDFRM) a few years ago in its basic form inheriting its intrinsic flux estimation problems that propagate throughout the algorithm and hence compromise the DTC performance. In this paper, we propose the use of Kalman Filter (KF) as an alternative to improve the estimation and consequently the control performance of the DTC. The KF is designed around a nominal model, but is shown to be reliable over the whole operating range of the BDFRM. Moreover, we use a modified robust exact differentiator based on Sliding Mode (SM) techniques to calculate the angular velocity from an angular position encoder. Computer simulations are meticulously designed to take into account real-world physical constraints and thus show illustrative supporting results as expected from an experimental setup

    Sveobuhvatan pregled LVRT mogućnosti i kliznog režima upravljanja vjetroagregata spojenog na mrežu s dvostruko napajanim asinkronim generatorom

    Get PDF
    In this paper, a comprehensive review of several strategies applied to improve the Low Voltage Ride-Through (LVRT) capability is presented for grid-connected wind-turbine-driven Doubly Fed Induction Generator (DFIG). Usually, the most proposed LVRT solutions in the literature based on: hardware solutions, which increase the system costs and software solutions, which increase the control system complexity. Therefore, the main objective of this study is to take into account grid requirements over LVRT performance under grid fault conditions using software solution based on Higher Order-Sliding Mode Control (HOSMC). Effectively, this control strategy is proposed to overcome the chattering problem and the injected stator current harmonics into the grid of the classical First Order Sliding Mode (FOSMC). Furthermore, the resultant HOSMC methodology is relatively simple; where, the online computational cost and time are considerably reduced. The LVRT capacity and effectiveness of the proposed control method, compared to the conventional FOSMC, are validated by time-domain simulation studies under Matlab on a 1.5 MW wind-turbine-driven DFIG.U ovom radu, prikazan je sveobuhvatan pregled strategija primjenjenih za poboljšanje sposobnosti rada tijekom prolaznih smetnji niskog napona mreže za vjetroagregat s dvostruko napajanim asinkronim generatorom (DFIG). Uobičajeno, većina predloženih LVRT rješenja u literaturi temelji se na: hardverskim rješenjima, što povećava troškove sustava i softverskih rješenja te složenost sustava upravljanja. Stoga je glavni cilj ovog istraživanja da se uključuje i zahtjevi mreže kroz ponašanje LVRTa u uvjetima mrežnih kvarova korištenjem softverskog rješenja zasnovanoga na kliznom režimu rada višeg reda (HOSMC). Efektivno, ova upravljačka strategija je predložena kako bi se prevladali oscilacije i ubacivanje harmonika struje statora u mrežu klasičnim metodama kliznog režima rada prvog reda (FOSMC). Nadalje, rezultantna metodologija HOSMC je relativno jednostavna; gdje su online računski zahtjevi i potrebno vrijeme značajno smanjeni. LVRT kapacitet i učinkovitost predložene metode upravljanja, u usporedbi s konvencionalnim FOSMC potvrđene su simulacijama u vremenskoj domeni u Matlabu na 1.5 MW vjetroagregatu s DFIG-om

    Nonlinear Dual-Mode Control of Variable-Speed Wind Turbines with Doubly Fed Induction Generators

    Full text link
    This paper presents a feedback/feedforward nonlinear controller for variable-speed wind turbines with doubly fed induction generators. By appropriately adjusting the rotor voltages and the blade pitch angle, the controller simultaneously enables: (a) control of the active power in both the maximum power tracking and power regulation modes, (b) seamless switching between the two modes, and (c) control of the reactive power so that a desirable power factor is maintained. Unlike many existing designs, the controller is developed based on original, nonlinear, electromechanically-coupled models of wind turbines, without attempting approximate linearization. Its development consists of three steps: (i) employ feedback linearization to exactly cancel some of the nonlinearities and perform arbitrary pole placement, (ii) design a speed controller that makes the rotor angular velocity track a desired reference whenever possible, and (iii) introduce a Lyapunov-like function and present a gradient-based approach for minimizing this function. The effectiveness of the controller is demonstrated through simulation of a wind turbine operating under several scenarios.Comment: 14 pages, 9 figures, accepted for publication in IEEE Transactions on Control Systems Technolog

    A High-Order Sliding Mode Observer for Sensorless Control ofDFIG-Based Wind Turbines

    No full text
    International audienceThis paper deals with the sensorless control of a doubly-fed induction generator (DFIG) based wind turbine. The sensorless control scheme is based on a high-order sliding mode (HOSM) observer to estimate the DFIG rotational speed. Indeed, high-order sliding mode observers provide theoretically finite time exact state observation and estimation of absolutely continuous unknown inputs. The proposed global control strategy combines an MPPT using a high-order sliding mode speed observer and a high-order sliding mode for the DFIG control. This strategy presents attractive features such as chattering-free behavior, finite reaching time, robustness and unmodeled dynamics (generator and turbine). Simulations using the wind turbine simulator FAST on a 1.5- MW three-blade wind turbine are carried out for the validation of the proposed sensorless control strategy
    corecore