23,547 research outputs found

    The role of learning on industrial simulation design and analysis

    Full text link
    The capability of modeling real-world system operations has turned simulation into an indispensable problemsolving methodology for business system design and analysis. Today, simulation supports decisions ranging from sourcing to operations to finance, starting at the strategic level and proceeding towards tactical and operational levels of decision-making. In such a dynamic setting, the practice of simulation goes beyond being a static problem-solving exercise and requires integration with learning. This article discusses the role of learning in simulation design and analysis motivated by the needs of industrial problems and describes how selected tools of statistical learning can be utilized for this purpose

    A multi-faceted approach to optimising a complex unplanned healthcare system

    Get PDF
    Unscheduled and urgent health care represents the largest area of activity and cost for the UK’s National Health Service (NHS). Like typical complex systems unplanned care has the features of interdependence and having structures at different scales which requires modelling at different levels. The aim of this paper is to discuss the development of a multifaceted approach to study and optimise this complex system. We aim to integrate four different methodologies to gain better understanding of the nature of the system and to develop ways to enhance its performance. These methodologies are: (a) Lean/ Flow theory to look at the process and patients and other flows; (b) Simulation/ System Dynamics to undertake analytical analysis and multi-level modelling; (c) stakeholder consultation and use of system thinking to analyse the system and identify options, barriers and good practice; and (d) visual analytic modelling to facilitate effective decision making in this complex environment. Of particular concern are the boundary issues i.e. how changes in unplanned care will impact on the adjacent facilities and ultimately on the whole Healthcare system

    A Simulation Model for Logical and Operative Clash Detection

    Get PDF
    The introduction of the Building Information Modeling (BIM) approach has facilitated the management process of documents produced by different kinds of professionals involved in the design and/or renovation of a building, through identification and subsequent management of geometrical interferences (Clash Detection). The methodology of this research proposes a tool to support Clash Detection, introducing the logical-operative dimension, that may occur with the presence of a construction site within a hospital structure, through the integration of a BIM model within a Game Engine environment, to preserve the continuity of daily hospital activities and trying to reduce negative impacts, times and costs due to construction activities

    In-situ simulation: A different approach to patient safety through immersive training

    Get PDF
    Simulation is becoming more and more popular in the field of healthcare education. The main concern for some faculty is knowing how to organise simulation training sessions when there is no simulation centre as they are not yet widely available and their cost is often prohibitive. In medical education, the pedagogic objectives are mainly aimed at improving the quality of care as well as patient safety. To that effect, a mobile training approach whereby simulation-based education is done at the point of care, outside simulation centres, is particularly appropriate. It is usually called “in-situ simulation”. This is an approach that allows training of care providers as a team in their normal working environment. It is particularly useful to observe human factors and train team members in a context that is their real working environment. This immersive training approach can be relatively low cost and enables to identify strengths and weaknesses of a healthcare system. This article reminds readers of the principle of « context specific learning » that is needed for the good implementation of simulation-based education in healthcare while highlighting the advantages, obstacles, and challenges to the development of in-situ simulation in hospitals. The objective is to make clinical simulation accessible to all clinicians for the best interests of the patient.Peer reviewe

    Can involving clients in simulation studies help them solve their future problems? A transfer of learning experiment

    Get PDF
    It is often stated that involving the client in operational research studies increases conceptual learning about a system which can then be applied repeatedly to other, similar, systems. Our study provides a novel measurement approach for behavioural OR studies that aim to analyse the impact of modelling in long term problem solving and decision making. In particular, our approach is the first to operationalise the measurement of transfer of learning from modelling using the concepts of close and far transfer, and overconfidence. We investigate learning in discrete-event simulation (DES) projects through an experimental study. Participants were trained to manage queuing problems by varying the degree to which they were involved in building and using a DES model of a hospital emergency department. They were then asked to transfer learning to a set of analogous problems. Findings demonstrate that transfer of learning from a simulation study is difficult, but possible. However, this learning is only accessible when sufficient time is provided for clients to process the structural behaviour of the model. Overconfidence is also an issue when the clients who were involved in model building attempt to transfer their learning without the aid of a new model. Behavioural OR studies that aim to understand learning from modelling can ultimately improve our modelling interactions with clients; helping to ensure the benefits for a longer term; and enabling modelling efforts to become more sustainable

    Towards the Holy Grail: combining system dynamics and discrete-event simulation in healthcare

    No full text
    The idea of combining discrete-event simulation and system dynamics has been a topic of debate in theoperations research community for over a decade. Many authors have considered the potential benefits ofsuch an approach from a methodological or practical standpoint. However, despite numerous examples ofmodels with both discrete and continuous parameters in the computer science and engineering literature,nobody in the OR field has yet succeeded in developing a genuinely hybrid approach which truly integratesthe philosophical approach and technical merits of both DES and SD in a single model. In this paperwe consider some of the reasons for this and describe two practical healthcare examples of combinedDES/SD models, which nevertheless fall short of the “holy grail” which has been so widely discussed inthe literature over the past decade
    corecore