9,311 research outputs found

    Testing demand responsive shared transport services via agent-based simulations

    Full text link
    Demand Responsive Shared Transport DRST services take advantage of Information and Communication Technologies ICT, to provide on demand transport services booking in real time a ride on a shared vehicle. In this paper, an agent-based model ABM is presented to test different the feasibility of different service configurations in a real context. First results show the impact of route choice strategy on the system performance

    The importance of information flows temporal attributes for the efficient scheduling of dynamic demand responsive transport services

    No full text
    The operation of a demand responsive transport service usually involves the management of dynamic requests. The underlying algorithms are mainly adaptations of procedures carefully designed to solve static versions of the problem, in which all the requests are known in advance. However there is no guarantee that the effectiveness of an algorithm stays unchanged when it is manipulated to work in a dynamic environment. On the other hand, the way the input is revealed to the algorithm has a decisive role on the schedule quality. We analyze three characteristics of the information flow (percentage of real-time requests, interval between call-in and requested pickup time and length of the computational cycle time), assessing their influence on the effectiveness of the scheduling proces

    Innovative systems for the transportation disadvantaged: towards more efficient and operationally usable planning tools

    Get PDF
    When considering innovative forms of public transport for specific groups, such as demand responsive services, the challenge is to find a good balance between operational efficiency and 'user friendliness' of the scheduling algorithm even when specialized skills are not available. Regret insertion-based processes have shown their effectiveness in addressing this specific concern. We introduce a new class of hybrid regret measures to understand better why the behaviour of this kind of heuristic is superior to that of other insertion rules. Our analyses show the importance of keeping a good balance between short- and long-term strategies during the solution process. We also use this methodology to investigate the relationship between the number of vehicles needed and total distance covered - the key point of any cost analysis striving for greater efficiency. Against expectations, in most cases decreasing fleet size leads to savings in vehicle mileage, since the heuristic solution is still far from optimality

    Online Predictive Optimization Framework for Stochastic Demand-Responsive Transit Services

    Full text link
    This study develops an online predictive optimization framework for dynamically operating a transit service in an area of crowd movements. The proposed framework integrates demand prediction and supply optimization to periodically redesign the service routes based on recently observed demand. To predict demand for the service, we use Quantile Regression to estimate the marginal distribution of movement counts between each pair of serviced locations. The framework then combines these marginals into a joint demand distribution by constructing a Gaussian copula, which captures the structure of correlation between the marginals. For supply optimization, we devise a linear programming model, which simultaneously determines the route structure and the service frequency according to the predicted demand. Importantly, our framework both preserves the uncertainty structure of future demand and leverages this for robust route optimization, while keeping both components decoupled. We evaluate our framework using a real-world case study of autonomous mobility in a university campus in Denmark. The results show that our framework often obtains the ground truth optimal solution, and can outperform conventional methods for route optimization, which do not leverage full predictive distributions.Comment: 34 pages, 12 figures, 5 table

    Towards In-Transit Analytics for Industry 4.0

    Full text link
    Industry 4.0, or Digital Manufacturing, is a vision of inter-connected services to facilitate innovation in the manufacturing sector. A fundamental requirement of innovation is the ability to be able to visualise manufacturing data, in order to discover new insight for increased competitive advantage. This article describes the enabling technologies that facilitate In-Transit Analytics, which is a necessary precursor for Industrial Internet of Things (IIoT) visualisation.Comment: 8 pages, 10th IEEE International Conference on Internet of Things (iThings-2017), Exeter, UK, 201

    Analysis and operational challenges of dynamic ride sharing demand responsive transportation models

    Get PDF
    There is a wide body of evidence that suggests sustainable mobility is not only a technological question, but that automotive technology will be a part of the solution in becoming a necessary albeit insufficient condition. Sufficiency is emerging as a paradigm shift from car ownership to vehicle usage, which is a consequence of socio-economic changes. Information and Communication Technologies (ICT) now make it possible for a user to access a mobility service to go anywhere at any time. Among the many emerging mobility services, Multiple Passenger Ridesharing and its variants look the most promising. However, challenges arise in implementing these systems while accounting specifically for time dependencies and time windows that reflect users’ needs, specifically in terms of real-time fleet dispatching and dynamic route calculation. On the other hand, we must consider the feasibility and impact analysis of the many factors influencing the behavior of the system – as, for example, service demand, the size of the service fleet, the capacity of the shared vehicles and whether the time window requirements are soft or tight. This paper analyzes - a Decision Support System that computes solutions with ad hoc heuristics applied to variants of Pick Up and Delivery Problems with Time Windows, as well as to Feasibility and Profitability criteria rooted in Dynamic Insertion Heuristics. To evaluate the applications, a Simulation Framework is proposed. It is based on a microscopic simulation model that emulates real-time traffic conditions and a real traffic information system. It also interacts with the Decision Support System by feeding it with the required data for making decisions in the simulation that emulate the behavior of the shared fleet. The proposed simulation framework has been implemented in a model of Barcelona’s Central Business District. The obtained results prove the potential feasibility of the mobility concept.Postprint (published version

    Automated mixed traffic vehicle control and scheduling study

    Get PDF
    The operation and the expected performance of a proposed automatic guideway transit system which uses low speed automated mixed traffic vehicles (AMTVs) were analyzed. Vehicle scheduling and headway control policies were evaluated with a transit system simulation model. The effect of mixed traffic interference on the average vehicle speed was examined with a vehicle pedestrian interface model. Control parameters regulating vehicle speed were evaluated for safe stopping and passenger comfort. Some preliminary data on the cost and operation of an experimental AMTV system are included. These data were the result of a separate task conducted at JPL, and were included as background information

    Assessing the Efficiency of Mass Transit Systems in the United States

    Get PDF
    Frustrated with increased parking problems, unstable gasoline prices, and stifling traffic congestion, a growing number of metropolitan city dwellers consider utilizing the mass transit system. Reflecting this sentiment, a ridership of the mass transit system across the United States has been on the rise for the past several years. A growing demand for the mass transit system, however, necessitates the expansion of service offerings, the improvement of basic infrastructure/routes, and the additional employment of mass transit workers, including drivers and maintenance crews. Such a need requires the optimal allocation of financial and human resources to the mass transit system in times of shrinking budgets and government downsizing. Thus, the public transit authority is faced with the dilemma of “doing more with less.” That is to say, the public transit authority needs to develop a “lean” strategy which can maximize transit services with the minimum expenses. To help the public transit authority develop such a lean strategy, this report identifies the best-in-class practices in the U.S. transit service sector and proposes transit policy guidelines that can best exploit lean principles built upon best-in-class practices
    corecore