2,751 research outputs found

    Improving the Efficiency of Energy Harvesting Embedded System

    Get PDF
    In the past decade, mobile embedded systems, such as cell phones and tablets have infiltrated and dramatically transformed our life. The computation power, storage capacity and data communication speed of mobile devices have increases tremendously, and they have been used for more critical applications with intensive computation/communication. As a result, the battery lifetime becomes increasingly important and tends to be one of the key considerations for the consumers. Researches have been carried out to improve the efficiency of the lithium ion battery, which is a specific member in the more general Electrical Energy Storage (EES) family and is widely used in mobile systems, as well as the efficiency of other electrical energy storage systems such as supercapacitor, lead acid battery, and nickel–hydrogen battery etc. Previous studies show that hybrid electrical energy storage (HEES), which is a mixture of different EES technologies, gives the best performance. On the other hand, the Energy Harvesting (EH) technique has the potential to solve the problem once and for all by providing green and semi-permanent supply of energy to the embedded systems. However, the harvesting power must submit to the uncertainty of the environment and the variation of the weather. A stable and consistent power supply cannot always be guaranteed. The limited lifetime of the EES system and the unstableness of the EH system can be overcome by combining these two together to an energy harvesting embedded system and making them work cooperatively. In an energy harvesting embedded systems, if the harvested power is sufficient for the workload, extra power can be stored in the EES element; if the harvested power is short, the energy stored in the EES bank can be used to support the load demand. How much energy can be stored in the charging phase and how long the EES bank lifetime will be are affected by many factors including the efficiency of the energy harvesting module, the input/output voltage of the DC-DC converters, the status of the EES elements, and the characteristics of the workload. In this thesis, when the harvesting energy is abundant, our goal is to store as much surplus energy as possible in the EES bank under the variation of the harvesting power and the workload power. We investigate the impact of workload scheduling and Dynamic Voltage and Frequency Scaling (DVFS) of the embedded system on the energy efficiency of the EES bank in the charging phase. We propose a fast heuristic algorithm to minimize the energy overhead on the DC-DC converter while satisfying the timing constraints of the embedded workload and maximizing the energy stored in the HEES system. The proposed algorithm improves the efficiency of charging and discharging in an energy harvesting embedded system. On the other hand, when the harvesting rate is low, workload power consumption is supplied by the EES bank. In this case, we try to minimize the energy consumption on the embedded system to extend its EES bank life. In this thesis, we consider the scenario when workload has uncertainties and is running on a heterogeneous multi-core system. The workload variation is represented by the selection of conditional branches which activate or deactivate a set of instructions belonging to a task. We employ both task scheduling and DVFS techniques for energy optimization. Our scheduling algorithm considers the statistical information of the workload to minimize the mean power consumption of the application while satisfying a hard deadline constraint. The proposed DVFS algorithm has pseudo linear complexity and achieves comparable energy reduction as the solutions found by mathematical programming. Due to its capability of slack reclaiming, our DVFS technique is less sensitive to small change in hardware or workload and works more robustly than other techniques without slack reclaiming

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

    Get PDF
    Software and Hardware synthesis are the major subtasks in the implementation of hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes multiple Microprocessors and Signal Processors, allowing designing complex hardware and software systems, yet flexible with respect to the delivered performance and executed application. An important technique, which affect the macroscopic system implementation characteristics is the scheduling of hardware operations, program instructions and software processes. This paper presents a survey of the various scheduling strategies in process scheduling. Process Scheduling has to take into account the real-time constraints. Processes are characterized by their timing constraints, periodicity, precedence and data dependency, pre-emptivity, priority etc. The affect of these characteristics on scheduling decisions has been described in this paper

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

    Get PDF
    Software and Hardware synthesis are the major subtasks in the implementation of hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes multiple Microprocessors and Signal Processors, allowing designing complex hardware and software systems, yet flexible with respect to the delivered performance and executed application. An important technique, which affect the macroscopic system implementation characteristics is the scheduling of hardware operations, program instructions and software processes. This paper presents a survey of the various scheduling strategies in process scheduling. Process Scheduling has to take into account the real-time constraints. Processes are characterized by their timing constraints, periodicity, precedence and data dependency, pre-emptivity, priority etc. The affect of these characteristics on scheduling decisions has been described in this paper

    The Interplay of Reward and Energy in Real-Time Systems

    Get PDF
    This work contends that three constraints need to be addressed in the context of power-aware real-time systems: energy, time and task rewards/values. These issues are studied for two types of systems. First, embedded systems running applications that will include temporal requirements (e.g., audio and video). Second, servers and server clusters that have timing constraints and Quality of Service (QoS) requirements implied by the application being executed (e.g., signal processing, audio/video streams, webpages). Furthermore, many future real-time systems will rely on different software versions to achieve a variety of QoS-aware tradeoffs, each with different rewards, time and energy requirements.For hard real-time systems, solutions are proposed that maximize the system reward/profit without exceeding the deadlines and without depleting the energy budget (in portable systems the energy budget is determined by the battery charge, while in server farms it is dependent on the server architecture and heat/cooling constraints). Both continuous and discrete reward and power models are studied, and the reward/energy analysis is extended with multiple task versions, optional/mandatory tasks and long-term reward maximization policies.For soft real-time systems, the reward model is relaxed into a QoS constraint, and stochastic schemes are first presented for power management of systems with unpredictable workloads. Then, load distribution and power management policies are addressed in the context of servers and homogeneous server farms. Finally, the work is extended with QoS-aware local and global policies for the general case of heterogeneous systems

    Battery Energy Storage System: A Financial Analysis for Microgrids

    Get PDF
    Renewable Energy Sources are becoming more popular mostly due to their reduced carbon footprint. One major issue that keeps them from becoming more popular is their output variability. Energy Storage Systems have been gaining a lot of “traction” into the power grid since they can address that variability and make RES more controllable. In this thesis, various Energy Storage Systems are introduced, while Battery Energy Storage Systems and their various technologies are studied in more detail. BESS are commonly used in supporting Photovoltaic Power Plants, as they provide the convenience of a shared DC bus. This thesis also includes an overview in solar energy technologies in order to assess the complexities of solar energy harvesting, through a PPP. A mathematical approach that quantifies the financial and operational impacts of a BESS is developed. Specifically, two test cases are investigated: intermittency mitigation of a PPP using a BESS and optimal scheduling of microgrid with BESS. The former problem is formulated as a Mixed Integer Linear Programming problem while the latter is formulated as a Linear Programming problem. Both algorithms provide accurate solutions while achieving optimality. The study concludes with a financial model for the optimal operation of an advanced lead-acid BESS and the outcome is analyzed

    A Control-Theoretic Design And Analysis Framework For Resilient Hard Real-Time Systems

    Get PDF
    We introduce a new design metric called system-resiliency which characterizes the maximum unpredictable external stresses that any hard-real-time performance mode can withstand. Our proposed systemresiliency framework addresses resiliency determination for real-time systems with physical and hardware limitations. Furthermore, our framework advises the system designer about the feasible trade-offs between external system resources for the system operating modes on a real-time system that operates in a multi-parametric resiliency environment. Modern multi-modal real-time systems degrade the system’s operational modes as a response to unpredictable external stimuli. During these mode transitions, real-time systems should demonstrate a reliable and graceful degradation of service. Many control-theoretic-based system design approaches exist. Although they permit real-time systems to operate under various physical constraints, none of them allows the system designer to predict the system-resiliency over multi-constrained operating environment. Our framework fills this gap; the proposed framework consists of two components: the design-phase and runtime control. With the design-phase analysis, the designer predicts the behavior of the real-time system for variable external conditions. Also, the runtime controller navigates the system to the best desired target using advanced control-theoretic techniques. Further, our framework addresses the system resiliency of both uniprocessor and multicore processor systems. As a proof of concept, we first introduce a design metric called thermal-resiliency, which characterizes the maximum external thermal stress that any hard-real-time performance mode can withstand. We verify the thermal-resiliency for the external thermal stresses on a uniprocessor system through a physical testbed. We show how to solve some of the issues and challenges of designing predictable real-time systems that guarantee hard deadlines even under transitions between modes in an unpredictable thermal environment where environmental temperature may dynamically change using our new metric. We extend the derivation of thermal-resiliency to multicore systems and determine the limitations of external thermal stress that any hard-real-time performance mode can withstand. Our control-theoretic framework allows the system designer to allocate asymmetric processing resources upon a multicore proiii cessor and still maintain thermal constraints. In addition, we develop real-time-scheduling sub-components that are necessary to fully implement our framework; toward this goal, we investigate the potential utility of parallelization for meeting real-time constraints and minimizing energy. Under malleable gang scheduling of implicit-deadline sporadic tasks upon multiprocessors, we show the non-necessity of dynamic voltage/frequency regarding optimality of our scheduling problem. We adapt the canonical schedule for DVFS multiprocessor platforms and propose a polynomial-time optimal processor/frequency-selection algorithm. Finally, we verify the correctness of our framework through multiple measurable physical and hardware constraints and complete our work on developing a generalized framework

    Data-Intensive Computing in Smart Microgrids

    Get PDF
    Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world
    • …
    corecore