529 research outputs found

    Optical Coherence Tomography guided Laser-Cochleostomy

    Get PDF
    Despite the high precision of laser, it remains challenging to control the laser-bone ablation without injuring the underlying critical structures. Providing an axial resolution on micrometre scale, OCT is a promising candidate for imaging microstructures beneath the bone surface and monitoring the ablation process. In this work, a bridge connecting these two technologies is established. A closed-loop control of laser-bone ablation under the monitoring with OCT has been successfully realised

    Workshop on Farm Animal and Food Quality Imaging 2013:Espoo, Finland, June 17, 2013, Proceedings

    Get PDF

    Image Analysis for X-ray Imaging of Food

    Get PDF

    Efektivní a expresivní mikrofasetové modely

    Get PDF
    Název: Efektivní a expresivní mikrofasetové modely Autor: Asen Atanasov Katedra: Katedra softwaru a výuky informatiky Vedoucí: doc. Dr. Alexander Wilkie, Katedra softwaru a výuky informatiky Abstrakt: V realistickém modelování vzhledu jsou drsné povrchy, které mají mikroskopické detaily, popsány pomocí tzv. mikrofazetových modelů. Mezi tyto modely patří analytické modely, které statisticky definují fyzikálně založený mikropovrch. Takové modely jsou široce používány v praxi, protože jsou nenáročné na výpočet a nabízejí značnou flexibilitu ve vzhledu, který s nimi lze docílit. Tyto modely mohou být rozšířené o viditelné povrchové prvky prostřednictvím normálové mapy. Stále však existují oblasti, ve kterých lze tento obecný typ modelu vylepšit: důležité funkce, jako je řízení anizotropie, někdy postrádají analytická řešení a účinné vykreslování normálových map vyžaduje přesné a obecné filtrovací algoritmy. Posunujeme předchozí práci v následujících oblastech: odvodíme analytické anizotropní modely, přeformulujeme problém filtrování a navrhneme efektivní filtrační algoritmus založený na nové datové struktuře filtračních dat. Konkrétně odvodíme obecný výsledek v mikrofazetové teorii: na základě libovolného mikropovrchu definovaného pomocí standardní mikrofazetové statistiky ukážeme, jak konstruovat statistiku...Title: Efficient and Expressive Microfacet Models Author: Asen Atanasov Department: Department of Software and Computer Science Education Supervisor: doc. Dr. Alexander Wilkie, Department of Software and Computer Science Education Abstract: In realistic appearance modeling, rough surfaces that have micro- scopic details are described using so-called microfacet models. These include analytical models that statistically define a physically-based microsurface. Such models are extensively used in practice because they are inexpensive to compute and offer considerable flexibility in terms of appearance control. Also, small but visible surface features can easily be added to them through the use of a normal map. However, there are still areas in which this general type of model can be improved: important features like anisotropy control sometimes lack analytic solutions, and the efficient rendering of normal maps requires accurate and general filtering algorithms. We advance the state of the art with regard to such models in these areas: we derive analytic anisotropic models, reformulate the filtering problem and propose an efficient filtering algorithm based on a novel filtering data structure. Specifically, we derive a general result in microfacet theory: given an arbitrary microsurface defined via standard...Katedra softwaru a výuky informatikyDepartment of Software and Computer Science EducationMatematicko-fyzikální fakultaFaculty of Mathematics and Physic

    Ray Tracing Gems

    Get PDF
    This book is a must-have for anyone serious about rendering in real time. With the announcement of new ray tracing APIs and hardware to support them, developers can easily create real-time applications with ray tracing as a core component. As ray tracing on the GPU becomes faster, it will play a more central role in real-time rendering. Ray Tracing Gems provides key building blocks for developers of games, architectural applications, visualizations, and more. Experts in rendering share their knowledge by explaining everything from nitty-gritty techniques that will improve any ray tracer to mastery of the new capabilities of current and future hardware. What you'll learn: The latest ray tracing techniques for developing real-time applications in multiple domains Guidance, advice, and best practices for rendering applications with Microsoft DirectX Raytracing (DXR) How to implement high-performance graphics for interactive visualizations, games, simulations, and more Who this book is for: Developers who are looking to leverage the latest APIs and GPU technology for real-time rendering and ray tracing Students looking to learn about best practices in these areas Enthusiasts who want to understand and experiment with their new GPU

    Modeling thermal phenomena and searching for new thermally induced monitor signals in large sale gravitational wave detectors

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) array’s 4 km detectors have transitioned from an initial configuration (iLIGO) to an enhanced configuration (eLIGO) [1]. Both configurations relied on high circulating laser powers to achieve sensitivity goals between 150 Hz and 8 kHz. These power levels were sufficient to induce thermally driven focal affects in the primary optics. Since the detectors were designed to achieve maximum sensitivity when laser light was optimally coupled (mode matched) into the antenna, small deviations in focal parameters influenced performance. A laser based thermal compensation system (TCS) was installed for use in both configurations to counteract excessive or insufficient thermal lensing. Consequently a toy model has been studied to search for detector derived parameters that might be used to monitor the focal state of the two most affected optics. Additional thermal behaviors induced by the TCS were investigated and modeled

    Modeling Atmosphere-Ocean Radiative Transfer: A PACE Mission Perspective

    Get PDF
    The research frontiers of radiative transfer (RT) in coupled atmosphere-ocean systems are explored to enable new science and specifically to support the upcoming Plankton, Aerosol, Cloud ocean Ecosystem (PACE) satellite mission. Given (i) the multitude of atmospheric and oceanic constituents at any given moment that each exhibits a large variety of physical and chemical properties and (ii) the diversity of light-matter interactions (scattering, absorption, and emission), tackling all outstanding RT aspects related to interpreting and/or simulating light reflected by atmosphere-ocean systems becomes impossible. Instead, we focus on both theoretical and experimental studies of RT topics important to the science threshold and goal questions of the PACE mission and the measurement capabilities of its instruments. We differentiate between (a) forward (FWD) RT studies that focus mainly on sensitivity to influencing variables and/or simulating data sets, and (b) inverse (INV) RT studies that also involve the retrieval of atmosphere and ocean parameters. Our topics cover (1) the ocean (i.e., water body): absorption and elastic/inelastic scattering by pure water (FWD RT) and models for scattering and absorption by particulates (FWD RT and INV RT); (2) the air-water interface: variations in ocean surface refractive index (INV RT) and in whitecap reflectance (INV RT); (3) the atmosphere: polarimetric and/or hyperspectral remote sensing of aerosols (INV RT) and of gases (FWD RT); and (4) atmosphere-ocean systems: benchmark comparisons, impact of the Earth's sphericity and adjacency effects on space-borne observations, and scattering in the ultraviolet regime (FWD RT). We provide for each topic a summary of past relevant (heritage) work, followed by a discussion (for unresolved questions) and RT updates

    The characteristics and feasibility of an in-line debris control technique for KrF excimer laser ablative micromachining

    Get PDF
    To observe KrF excimer laser ablation through thin liquid film of de-ionized (DI) water and the effects thereof on debris control, equipment was designed to contain a small control volume that could be supplied with a fixed flow velocity thin film of DI water to immerse a bisphenol A polycarbonate workpiece. Using the same equipment comparison with ablation in ambient air was possible. The positional debris deposition of samples machined in ambient air was found to show modal tendency reliant on the feature shape machined and according to species size. This is proposed to be due to the interaction of multiple shockwaves at the extent of ablation plumes generated at geometry specific locations in the feature. Debris was deposited where the shockwaves collide. Ablating under a flowing thin film of DI water showed potential to modify the end position and typical size of the debris produced, as well as increased homogeneity of deposition density. Compared with a sample machined in ambient air, the use of immersion has reduced the range of debris deposition by 17% and the deposition within the boundary of the ablation plume has a comparatively even population density. Unlike samples machined in ambient air, outside the ablation plume extents positional control of deposited debris by thin film flowing DI water immersion was evidenced by rippled flow line patterns, indicating the action of transport by fluid flow. A typical increase in debris size by an order of magnitude when using DI water as an immersing liquid was measured, a result that is in line with a colloidal interaction response... cont'd

    Modeling atmosphere-ocean radiative transfer: A PACE mission perspective

    Get PDF
    The research frontiers of radiative transfer (RT) in coupled atmosphere-ocean systems are explored to enable new science and specifically to support the upcoming Plankton, Aerosol, Cloud ocean Ecosystem (PACE) satellite mission. Given (i) the multitude of atmospheric and oceanic constituents at any given moment that each exhibits a large variety of physical and chemical properties and (ii) the diversity of light-matter interactions (scattering, absorption, and emission), tackling all outstanding RT aspects related to interpreting and/or simulating light reflected by atmosphere-ocean systems becomes impossible. Instead, we focus on both theoretical and experimental studies of RT topics important to the science threshold and goal questions of the PACE mission and the measurement capabilities of its instruments. We differentiate between (a) forward (FWD) RT studies that focus mainly on sensitivity to influencing variables and/or simulating data sets, and (b) inverse (INV) RT studies that also involve the retrieval of atmosphere and ocean parameters. Our topics cover (1) the ocean (i.e., water body): absorption and elastic/inelastic scattering by pure water (FWD RT) and models for scattering and absorption by particulates (FWD RT and INV RT); (2) the air-water interface: variations in ocean surface refractive index (INV RT) and in whitecap reflectance (INV RT); (3) the atmosphere: polarimetric and/or hyperspectral remote sensing of aerosols (INV RT) and of gases (FWD RT); and (4) atmosphere-ocean systems: benchmark comparisons, impact of the Earth’s sphericity and adjacency effects on space-borne observations, and scattering in the ultraviolet regime (FWD RT). We provide for each topic a summary of past relevant (heritage) work, followed by a discussion (for unresolved questions) and RT updates

    Modeling Atmosphere-Ocean Radiative Transfer: A PACE Mission Perspective

    Get PDF
    The research frontiers of radiative transfer (RT) in coupled atmosphere-ocean systems are explored to enable new science and specifically to support the upcoming Plankton, Aerosol, Cloud ocean Ecosystem (PACE) satellite mission. Given (i) the multitude of atmospheric and oceanic constituents at any given moment that each exhibits a large variety of physical and chemical properties and (ii) the diversity of light-matter interactions (scattering, absorption, and emission), tackling all outstanding RT aspects related to interpreting and/or simulating light reflected by atmosphere-ocean systems becomes impossible. Instead, we focus on both theoretical and experimental studies of RT topics important to the science threshold and goal questions of the PACE mission and the measurement capabilities of its instruments. We differentiate between (a) forward (FWD) RT studies that focus mainly on sensitivity to influencing variables and/or simulating data sets, and (b) inverse (INV) RT studies that also involve the retrieval of atmosphere and ocean parameters. Our topics cover (1) the ocean (i.e., water body): absorption and elastic/inelastic scattering by pure water (FWD RT) and models for scattering and absorption by particulates (FWD RT and INV RT); (2) the air-water interface: variations in ocean surface refractive index (INV RT) and in whitecap reflectance (INV RT); (3) the atmosphere: polarimetric and/or hyperspectral remote sensing of aerosols (INV RT) and of gases (FWD RT); and (4) atmosphere-ocean systems: benchmark comparisons, impact of the Earth’s sphericity and adjacency effects on space-borne observations, and scattering in the ultraviolet regime (FWD RT). We provide for each topic a summary of past relevant (heritage) work, followed by a discussion (for unresolved questions) and RT updates
    • …
    corecore