2,358 research outputs found

    Distributed Active-Camera Control Architecture Based on Multi-Agent Systems

    Get PDF
    Proceedings of: 10th Conference on Practical Applications of Agents and Multi-Agent Systems, Salamanca (Spain), 28-30 March 2012 (PAAMS`12)In this contribution a Multi-Agent System architecture is proposed to deal with the management of spatially distributed heterogeneous nets of sensors, specially is described the problem of Pan-Tilt-Zoom or active cameras. The design of surveillance multi-sensor systems implies undertaking to solve two related problems: data fusion and coordinated sensor-task management. Generally, proposed architectures for the coordinated operation of multiple sensors are based on centralization of management decisions at the fusion center. However, the existence of intelligent sensors capable of taking decisions brings the possibility of conceiving alternative decentralized architectures. This problem could be approached by means of a Multi-Agent System (MAS). In specific, this paper proposes a MAS architecture for automatically control sensors in video surveillance environments.This work was supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, CAM CONTEXTS (S2009/ TIC-1485) and DPS2008- 07029-C02-02.Publicad

    A practical approach for active camera coordination based on a fusion-driven multi-agent system

    Get PDF
    In this paper, we propose a multi-agent system architecture to manage spatially distributed active (or pan-tilt-zoom) cameras. Traditional video surveillance algorithms are of no use for active cameras, and we have to look at different approaches. Such multi-sensor surveillance systems have to be designed to solve two related problems: data fusion and coordinated sensor-task management. Generally, architectures proposed for the coordinated operation of multiple cameras are based on the centralisation of management decisions at the fusion centre. However, the existence of intelligent sensors capable of decision making brings with it the possibility of conceiving alternative decentralised architectures. This problem is approached by means of a MAS, integrating data fusion as an integral part of the architecture for distributed coordination purposes. This paper presents the MAS architecture and system agents.This work was supported in part by Projects MINECO TEC2012-37832-C02-01, CICYT TEC2011-28626-C02-02 and CAM CONTEXTS (S2009/TIC-1485).Publicad

    Evaluation of HMDs by QFD for Augmented Reality Applications in the Maxillofacial Surgery Domain

    Get PDF
    Today, surgical operations are less invasive than they were a few decades ago and, in medicine, there is a growing trend towards precision surgery. Among many technological advancements, augmented reality (AR) can be a powerful tool for improving the surgery practice through its ability to superimpose the 3D geometrical information of the pre-planned operation over the surgical field as well as medical and instrumental information gathered from operating room equipment. AR is fundamental to reach new standards in maxillofacial surgery. The surgeons will be able to not shift their focus from the patients while looking to the monitors. Osteotomies will not require physical tools to be fixed on patient bones as guides to make resections. Handling grafts and 3D models directly in the operating room will permit a fine tuning of the procedure before harvesting the implant. This article aims to study the application of AR head-mounted displays (HMD) in three operative scenarios (oncological and reconstructive surgery, orthognathic surgery, and maxillofacial trauma surgery) by the means of quantitative logic using the Quality Function Deployment (QFD) tool to determine their requirements. The article provides an evaluation of the readiness degree of HMD currently on market and highlights the lacking features

    Vision-Based Bridge Deformation Monitoring

    Get PDF
    This is the final version of the article. Available from Frontiers Media via the DOI in this record.Optics-based tracking of civil structures is not new, due to historical application in surveying, but automated applications capable of tracking at rates that capture dynamic effects are now a hot research topic in structural health monitoring. Recent innovations show promise of true non-contacting monitoring capability avoiding the need for physically attached sensor arrays. The paper reviews recent experience using the Imetrum Dynamic Monitoring Station (DMS) commercial optics-based tracking system on Humber Bridge and Tamar Bridge, aiming to show both the potential and limitations. In particular, the paper focuses on the challenges to field application of such a system resulting from camera instability, nature of the target (artificial or structural feature), and illumination. The paper ends with evaluation of a non-proprietary system using a consumer-grade camera for cable vibration monitoring to emphasize the potential for lower cost systems where if performance specifications can be relaxed.The GPS system at Humber was created by Dr. Ki Koo with support from EPSRC grant EP/F035403/1. DH was supported via the Marie Curie Fellowship programme and as such the research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 330195

    The future of camera networks: staying smart in a chaotic world

    Get PDF
    Camera networks become smart when they can interpret video data on board, in order to carry out tasks as a collective, such as target tracking and (re-)identi cation of objects of interest. Unlike today’s deployments, which are mainly restricted to lab settings and highly controlled high-value applications, future smart camera networks will be messy and unpredictable. They will operate on a vast scale, drawing on mobile resources connected in networks structured in complex and changing ways. They will comprise heterogeneous and decentralised aggregations of visual sensors, which will come together in temporary alliances, in unforeseen and rapidly unfolding scenarios. The potential to include and harness citizen-contributed mobile streaming, body-worn video, and robot- mounted cameras, alongside more traditional xed or PTZ cameras, and supported by other non-visual sensors, leads to a number of di cult and important challenges. In this position paper, we discuss a variety of potential uses for such complex smart camera networks, and some of the challenges that arise when staying smart in the presence of such complexity. We present a general discussion on the challenges of heterogeneity, coordination, self-recon gurability, mobility, and collaboration in camera networks

    Why Digital Policing is Different

    Get PDF
    Many Fourth Amendment debates boil down to following argument: if police can already do something in an analog world, why does it matter that new digital technology allows them to do it better, more efficiently, or faster? This Article addresses why digital is, in fact, different when it comes to police surveillance technologies. The Article argues that courts should think of these digital technologies not as enhancements of traditional analog policing practices but as something completely different, warranting a different Fourth Amendment approach. Properly understood, certain digital searches should be legally distinguishable from analog search precedent such that the older cases no longer control the analysis
    • 

    corecore