3,172 research outputs found

    Real-time predictive maintenance for wind turbines using Big Data frameworks

    Full text link
    This work presents the evolution of a solution for predictive maintenance to a Big Data environment. The proposed adaptation aims for predicting failures on wind turbines using a data-driven solution deployed in the cloud and which is composed by three main modules. (i) A predictive model generator which generates predictive models for each monitored wind turbine by means of Random Forest algorithm. (ii) A monitoring agent that makes predictions every 10 minutes about failures in wind turbines during the next hour. Finally, (iii) a dashboard where given predictions can be visualized. To implement the solution Apache Spark, Apache Kafka, Apache Mesos and HDFS have been used. Therefore, we have improved the previous work in terms of data process speed, scalability and automation. In addition, we have provided fault-tolerant functionality with a centralized access point from where the status of all the wind turbines of a company localized all over the world can be monitored, reducing O&M costs

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea

    A Supportive Framework for the Development of a Digital Twin for Wind Turbines Using Open-Source Software Tiril Malmedal Mechanics and Process Technology

    Get PDF
    The world is facing a global climate crisis. Renewable energy is one of the big solutions, nevertheless, there are technological challenges. Wind power is an important part of the renewable energy system. With the digitalization of industry, smart monitoring and operation is an important step towards efficient use of resources. Thus, Digital Twins (DT) should be applied to enhance power output. Digital Twins for energy systems combine many fields of study, such as smart monitoring, big data technology, and advanced physical modeling. Frameworks for the structure of Digital Twins are many, but there are few standardized methods based on the experience of such developed Digital Twins. An integrative review on the topic of Digital Twins with the goal of creating a conceptual development framework for DTs with open-source software is performed. However, the framework is yet to be tested experimentally but is nevertheless an important contribution toward the understanding of DT technology development. The result of the review is a seven-step framework identifying potential components and methods needed to create a fully developed DT for the aerodynamics of a wind turbine. Suggested steps are Assessment, Create, Communicate, Aggregate, Analyze, Insight, and Act. The goal is that the framework can stimulate more research on digital twins for small-scale wind power. Thus, making small-scale wind power more accessible and affordable

    A Review of Predictive and Prescriptive Offshore Wind Farm Operation and Maintenance

    Get PDF
    Offshore wind farms are a rapidly developing source of clean, low-carbon energy and as they continue to grow in scale and capacity, so does the requirement for their efficient and optimised operation and maintenance. Historically, approaches to maintenance have been purely reactive. However, there is a movement in offshore wind, and wider industry in general, towards more proactive, condition-based maintenance approaches which rely on operational data-driven decision making. This paper reviews the current efforts in proactive maintenance strategies, both predictive and prescriptive, of which the latter is an evolution of the former. Both use operational data to determine whether a turbine component will fail in order to provide sufficient warning to carry out necessary maintenance. Prescriptive strategies also provide optimised maintenance actions, incorporating predictions into a wider maintenance plan to address predicted failure modes. Beginning with a summary of common techniques used across both strategies, this review moves on to discuss their respective applications in offshore wind operation and maintenance. This review concludes with suggested areas for future work, underlining the need for models which can be simply incorporated by site operators and integrate live data whilst handling uncertainties. A need for further focus on medium-term planning strategies is also highlighted along with consideration of the question of how to quantify the impact of a proactive maintenance strategy

    Techniques and Emerging Trends for State of the Art Equipment Maintenance Systems - A Bibliometric Analysis

    Get PDF
    The increasing interconnection of machines in industrial production on one hand, and the improved capabilities to store, retrieve, and analyze large amounts of data on the other, offer promising perspectives for maintaining production machines. Recently, predictive maintenance has gained increasing attention in the context of equipment maintenance systems. As opposed to other approaches, predictive maintenance relies on machine behavior models, which offer several advantages. In this highly interdisciplinary field, there is a lack of a literature review of relevant research fields and realization techniques. To obtain a comprehensive overview on the state of the art, large data sets of relevant literature need to be considered and, best case, be automatically partitioned into relevant research fields. A proper methodology to obtain such an overview is the bibliometric analysis method. In the presented work, we apply a bibliometric analysis to the field of equipment maintenance systems. To be more precise, we analyzed clusters of identified literature with the goal to obtain deeper insight into the related research fields. Moreover, cluster metrics reveal the importance of a single paper and an investigation of the temporal cluster development indicates the evolution of research topics. In this context, we introduce a new measure to compare results from different time periods in an appropriate way. In turn, among others, this simplifies the analysis of topics, with a vast amount of subtopics. Altogether, the obtained results particularly provide a comprehensive overview of established techniques and emerging trends for equipment maintenance systems

    Use of advanced analytics for health estimation and failure prediction in wind turbines

    Get PDF
    Tesi en modalitat de tesi per compendiThe energy sector has undergone drastic changes and critical revolutions in the last few decades. Renewable energy sources have grown significantly, now representing a sizeable share of the energy production mix. Wind energy has seen increasing rate of adoptions, being one of the more convenient and sustainable mean of producing energy. Research and innovation have helped greatly in driving down production and operation costs of wind energy, yet important challenges still remain open. This thesis addresses predictive maintenance and monitoring of wind turbines, aiming to present predictive frameworks designed with the necessities of the industry in mind. More concretely: interpretability, scalability, modularity and reliability of the predictions are the objectives —together with limited data requirements— of this project. Of all the available data at the disposal of wind turbine operators, SCADA is the principal source of information utilized in this research, due to its wide availability and low cost. Ensemble models played an important role in the development of the presented predictive frameworks thanks to their modular nature which allows to combine very diverse algorithms and data types. Important insights gained from these experiments are the beneficial effect of combining multiple and diverse sources of data —for example SCADA and alarms logs—, the easiness of combining different algorithms and indicators, and the noticeable gain in predicting performance that it can provide. Finally, given the central role that SCADA data plays in this thesis, but also in the wind energy industry, a detailed analysis of the limitations and shortcomings of SCADA data is presented. In particular, the ef- fect of data aggregation —a common practice in the wind industry— is determined developing a methodological framework that has been used to study high–frequency SCADA data. This lead to the conclusion that typical aggregation periods, i.e. 5–10 minutes that are the standard in wind energy industry are not able to capture and maintain the information content of fast–changing signals, such as wind and electrical measurements.El sector energètic ha experimentat importants canvis i revolucions en les últimes dècades. Les fonts d’energia renovables han crescut significativament, i ara representen una part important en el conjunt de generació. L’energia eòlica ha augmentat significativament, convertint-se en una de les millors alternatives per produir energia verda. La recerca i la innovació ha ajudat a reduir considerablement els costos de producció i operació de l’energia eòlica, però encara hi ha oberts reptes importants. Aquesta tesi aborda el manteniment predictiu i el seguiment d’aerogeneradors, amb l’objectiu de presentar solucions d’algoritmes de predicció dissenyats tenint en compte les necessitats de la indústria. Més concretament conceptes com, la interpretabilitat, escalabilitat, modularitat i fiabilitat de les prediccions ho són els objectius, juntament amb els requisits limitats per les de dades disponibles d’aquest projecte. De totes les dades disponibles a disposició dels operadors d’aerogeneradors, les dades del sistema SCADA són la principal font d’informació utilitzada en aquest projecte, per la seva àmplia disponibilitat i baix cost. En el present treball, els models de conjunt tenen un paper important en el desenvolupament dels marcs predictius presentats gràcies al seu caràcter modular que permet l’ús d’algoritmes i tipus de dades molt diversos. Resultats importants obtinguts d’aquests experiments són l’efecte beneficiós de combinar múltiples i diverses fonts de dades, per exemple, SCADA i dades d’alarmes, la facilitat de combinar diferents algorismes i indicadors i el notable guany en predir el rendiment que es pot oferir. Finalment, donat el paper central que SCADA l’anàlisi de dades juga en aquesta tesi, però també en la indústria de l’energia eòlica, una anàlisi detallada de la es presenten les limitacions i les mancances de les dades SCADA. En particular es va estudiar l’efecte de l’agregació de dades -una pràctica habitual en la indústria eòlica-. Dins d’aquest treball es proposa un marc metodològic que s’ha utilitzat per estudiar dades SCADA d’alta freqüència. Això va portar a la conclusió que els períodes d’agregació típics, de 5 a 10 minuts que són l’estàndard a la indústria de l’energia eòlica, no són capaços de capturar i mantenir el contingut d’informació de senyals que canvien ràpidament, com ara mesures eòliques i elèctriquesPostprint (published version

    Definition of the Future Skills Needs of Job Profiles in the Renewable Energy Sector

    Get PDF
    The growth of the renewable energy industry is happening at a swift pace pushed, by the emergence of Industry 4.0. Smart technologies like artificial intelligence (AI), Big Data, the Internet of Things (IoT), Digital Twin (DT), etc. enable companies within the sector of renewable energies to drastically improve their operations. In this sectoral context, where upgraded sustainability standards also play a vital role, it is necessary to fulfil the human capital requirements of the imminent technological advances. This article aims to determine the current skills of the renewable energy industry workforce and to predict the upcoming skill requirements linked to a digital transition by creating a unified database that contains both types of skills. This will serve as a tool for renewable energy businesses, education centers, and policymakers to plan the training itinerary necessary to close the skills gap, as part of the sectoral strategy to achieve a competent future workforce.This research was partly funded by (a) the European Union through the Erasmus Plus Programme (Grant Agreement No. 2018-3019/001-001, Project No. 600886-1-2018-1-DE-EPPKA2-SSA-B)*, (b) the 4gune cluster, Siemens Gamesa and Aalborg University through the project “Identification of the necessary skills and competences for professionals of the future renewable energy sector”, and (c) Lantek, Inzu Group, Fundación Telefónica and Fundación BBK, partners of the Deusto Digital Industry Chair

    Condition-based maintenance of wind turbine blades

    Get PDF
    The blades of offshore wind farms (OWTs) are susceptible to a wide variety of diverse sources of damage. Internal impacts are caused primarily by structure deterioration, so even though outer consequences are the consequence of harsh marine ecosystems. We examine condition-based maintenance (CBM) for a multiblade OWT system that is exposed to environmental shocks in this work. In recent years, there has been a significant rise in the number of wind turbines operating offshore that make use of CBMs. The gearbox, generator, and drive train all have their own vibration-based monitoring systems, which form most of their foundation. For the blades, drive train, tower, and foundation, a cost analysis of the various widely viable CBM systems as well as their individual prices has been done. The purpose of this article is to investigate the potential benefits that may result from using these supplementary systems in the maintenance strategy. Along with providing a theoretical foundation, this article reviews the previous research that has been conducted on CBM of OWT blades. Utilizing the data collected from condition monitoring, an artificial neural network is employed to provide predictions on the remaining life. For the purpose of assessing and forecasting the cost and efficacy of CBM, a simple tool that is based on artificial neural networks (ANN) has been developed. A CBM technique that is well-established and is based on data from condition monitoring is used to reduce cost of maintenance. This can be accomplished by reducing malfunctions, cutting down on service interruption, and reducing the number of unnecessary maintenance works. In MATLAB, an ANN is used to research both the failure replacement cost and the preventative maintenance cost. In addition to this, a technique for optimization is carried out to gain the optimal threshold values. There is a significant opportunity to save costs by improving how choices are made on maintenance to make the operations more cost-effective. In this research, a technique to optimizing CBM program for elements whose deterioration may be characterized according to the level of damage that it has sustained is presented. The strategy may be used for maintenance that is based on inspections as well as maintenance that is based on online condition monitoring systems
    corecore