1,338 research outputs found

    High Speed Lunar Navigation for Crewed and Remotely Piloted Vehicles

    Get PDF
    Increased navigation speed is desirable for lunar rovers, whether autonomous, crewed or remotely operated, but is hampered by the low gravity, high contrast lighting and rough terrain. We describe lidar based navigation system deployed on NASA's K10 autonomous rover and to increase the terrain hazard situational awareness of the Lunar Electric Rover crew

    The Role of Haptics in Games

    Get PDF

    Impact of Imaging and Distance Perception in VR Immersive Visual Experience

    Get PDF
    Virtual reality (VR) headsets have evolved to include unprecedented viewing quality. Meanwhile, they have become lightweight, wireless, and low-cost, which has opened to new applications and a much wider audience. VR headsets can now provide users with greater understanding of events and accuracy of observation, making decision-making faster and more effective. However, the spread of immersive technologies has shown a slow take-up, with the adoption of virtual reality limited to a few applications, typically related to entertainment. This reluctance appears to be due to the often-necessary change of operating paradigm and some scepticism towards the "VR advantage". The need therefore arises to evaluate the contribution that a VR system can make to user performance, for example to monitoring and decision-making. This will help system designers understand when immersive technologies can be proposed to replace or complement standard display systems such as a desktop monitor. In parallel to the VR headsets evolution there has been that of 360 cameras, which are now capable to instantly acquire photographs and videos in stereoscopic 3D (S3D) modality, with very high resolutions. 360° images are innately suited to VR headsets, where the captured view can be observed and explored through the natural rotation of the head. Acquired views can even be experienced and navigated from the inside as they are captured. The combination of omnidirectional images and VR headsets has opened to a new way of creating immersive visual representations. We call it: photo-based VR. This represents a new methodology that combines traditional model-based rendering with high-quality omnidirectional texture-mapping. Photo-based VR is particularly suitable for applications related to remote visits and realistic scene reconstruction, useful for monitoring and surveillance systems, control panels and operator training. The presented PhD study investigates the potential of photo-based VR representations. It starts by evaluating the role of immersion and user’s performance in today's graphical visual experience, to then use it as a reference to develop and evaluate new photo-based VR solutions. With the current literature on photo-based VR experience and associated user performance being very limited, this study builds new knowledge from the proposed assessments. We conduct five user studies on a few representative applications examining how visual representations can be affected by system factors (camera and display related) and how it can influence human factors (such as realism, presence, and emotions). Particular attention is paid to realistic depth perception, to support which we develop target solutions for photo-based VR. They are intended to provide users with a correct perception of space dimension and objects size. We call it: true-dimensional visualization. The presented work contributes to unexplored fields including photo-based VR and true-dimensional visualization, offering immersive system designers a thorough comprehension of the benefits, potential, and type of applications in which these new methods can make the difference. This thesis manuscript and its findings have been partly presented in scientific publications. In particular, five conference papers on Springer and the IEEE symposia, [1], [2], [3], [4], [5], and one journal article in an IEEE periodical [6], have been published

    Real-Time Terrain Storage Generation from Multiple Sensors towards Mobile Robot Operation Interface

    Get PDF
    A mobile robot mounted with multiple sensors is used to rapidly collect 3D point clouds and video images so as to allow accurate terrain modeling. In this study, we develop a real-time terrain storage generation and representation system including a nonground point database (PDB), ground mesh database (MDB), and texture database (TDB). A voxel-based flag map is proposed for incrementally registering large-scale point clouds in a terrain model in real time. We quantize the 3D point clouds into 3D grids of the flag map as a comparative table in order to remove the redundant points. We integrate the large-scale 3D point clouds into a nonground PDB and a node-based terrain mesh using the CPU. Subsequently, we program a graphics processing unit (GPU) to generate the TDB by mapping the triangles in the terrain mesh onto the captured video images. Finally, we produce a nonground voxel map and a ground textured mesh as a terrain reconstruction result. Our proposed methods were tested in an outdoor environment. Our results show that the proposed system was able to rapidly generate terrain storage and provide high resolution terrain representation for mobile mapping services and a graphical user interface between remote operators and mobile robots

    An Overview of Self-Adaptive Technologies Within Virtual Reality Training

    Get PDF
    This overview presents the current state-of-the-art of self-adaptive technologies within virtual reality (VR) training. Virtual reality training and assessment is increasingly used for five key areas: medical, industrial & commercial training, serious games, rehabilitation and remote training such as Massive Open Online Courses (MOOCs). Adaptation can be applied to five core technologies of VR including haptic devices, stereo graphics, adaptive content, assessment and autonomous agents. Automation of VR training can contribute to automation of actual procedures including remote and robotic assisted surgery which reduces injury and improves accuracy of the procedure. Automated haptic interaction can enable tele-presence and virtual artefact tactile interaction from either remote or simulated environments. Automation, machine learning and data driven features play an important role in providing trainee-specific individual adaptive training content. Data from trainee assessment can form an input to autonomous systems for customised training and automated difficulty levels to match individual requirements. Self-adaptive technology has been developed previously within individual technologies of VR training. One of the conclusions of this research is that while it does not exist, an enhanced portable framework is needed and it would be beneficial to combine automation of core technologies, producing a reusable automation framework for VR training

    Digital Cognitive Companions for Marine Vessels : On the Path Towards Autonomous Ships

    Get PDF
    As for the automotive industry, industry and academia are making extensive efforts to create autonomous ships. The solutions for this are very technology-intense. Many building blocks, often relying on AI technology, need to work together to create a complete system that is safe and reliable to use. Even when the ships are fully unmanned, humans are still foreseen to guide the ships when unknown situations arise. This will be done through teleoperation systems.In this thesis, methods are presented to enhance the capability of two building blocks that are important for autonomous ships; a positioning system, and a system for teleoperation.The positioning system has been constructed to not rely on the Global Positioning System (GPS), as this system can be jammed or spoofed. Instead, it uses Bayesian calculations to compare the bottom depth and magnetic field measurements with known sea charts and magnetic field maps, in order to estimate the position. State-of-the-art techniques for this method typically use high-resolution maps. The problem is that there are hardly any high-resolution terrain maps available in the world. Hence we present a method using standard sea-charts. We compensate for the lower accuracy by using other domains, such as magnetic field intensity and bearings to landmarks. Using data from a field trial, we showed that the fusion method using multiple domains was more robust than using only one domain. In the second building block, we first investigated how 3D and VR approaches could support the remote operation of unmanned ships with a data connection with low throughput, by comparing respective graphical user interfaces (GUI) with a Baseline GUI following the currently applied interfaces in such contexts. Our findings show that both the 3D and VR approaches outperform the traditional approach significantly. We found the 3D GUI and VR GUI users to be better at reacting to potentially dangerous situations than the Baseline GUI users, and they could keep track of the surroundings more accurately. Building from this, we conducted a teleoperation user study using real-world data from a field-trial in the archipelago, where the users should assist the positioning system with bearings to landmarks. The users experienced the tool to give a good overview, and despite the connection with the low throughput, they managed through the GUI to significantly improve the positioning accuracy
    • …
    corecore