933 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    An In-Depth Review of ChatGPT’s Pros and Cons for Learning and Teaching in Education

    Get PDF
    As technology progresses, there has been an increasing interest in using Chatbot GPT (Generative Pre-trained Transformer) in education. Chatbot GPT, or ChatGPT, gained one million users within the first week of launching in November 2022 and had amassed over 100 million active users by February 2023. This type of artificial intelligence uses natural language processing to convert it into a user. This paper presents a comprehensive analysis and review of 34 articles published on ChatGPT and its potential impact on education by utilizing the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology. This review analyzed various studies and articles to examine the strengths and limitations of GPT language models in education from 2018 to the present. The advantages of ChatGPT include its capacity to provide personalized and adaptive learning, instant feedback, and improved accessibility. However, there are potential drawbacks, such as the lack of emotional intelligence, the risk of overreliance on technology, and privacy concerns. This review suggests that ChatGPT has significant promise for education yet reinforces the necessity for further research and careful consideration of possible risks and limitations. Specifically, it pointed out potential invisible manipulations by instructing ChatGPT to answer educationrelated topics. The paper concludes by discussing the implications of ChatGPT for the future of education and emphasizing the need for further research in this field

    Using Visual Cropping to Enhance Fine-Detail Question Answering of BLIP-Family Models

    Full text link
    Visual Question Answering is a challenging task, as it requires seamless interaction between perceptual, linguistic, and background knowledge systems. While the recent progress of visual and natural language models like BLIP has led to improved performance on this task, we lack understanding of the ability of such models to perform on different kinds of questions and reasoning types. As our initial analysis of BLIP-family models revealed difficulty with answering fine-detail questions, we investigate the following question: Can visual cropping be employed to improve the performance of state-of-the-art visual question answering models on fine-detail questions? Given the recent success of the BLIP-family models, we study a zero-shot and a fine-tuned BLIP model. We define three controlled subsets of the popular VQA-v2 benchmark to measure whether cropping can help model performance. Besides human cropping, we devise two automatic cropping strategies based on multi-modal embedding by CLIP and BLIP visual QA model gradients. Our experiments demonstrate that the performance of BLIP model variants can be significantly improved through human cropping, and automatic cropping methods can produce comparable benefits. A deeper dive into our findings indicates that the performance enhancement is more pronounced in zero-shot models than in fine-tuned models and more salient with smaller bounding boxes than larger ones. We perform case studies to connect quantitative differences with qualitative observations across question types and datasets. Finally, we see that the cropping enhancement is robust, as we gain an improvement of 4.59% (absolute) in the general VQA-random task by simply inputting a concatenation of the original and gradient-based cropped images. We make our code available to facilitate further innovation on visual cropping methods for question answering.Comment: 16 pages, 5 figures, 7 table

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Stress detection in lifelog data for improved personalized lifelog retrieval system

    Get PDF
    Stress can be categorized into acute and chronic types, with acute stress having short-term positive effects in managing hazardous situations, while chronic stress can adversely impact mental health. In a biological context, stress elicits a physiological response indicative of the fight-or-flight mechanism, accompanied by measurable changes in physiological signals such as blood volume pulse (BVP), galvanic skin response (GSR), and skin temperature (TEMP). While clinical-grade devices have traditionally been used to measure these signals, recent advancements in sensor technology enable their capture using consumer-grade wearable devices, providing opportunities for research in acute stress detection. Despite these advancements, there has been limited focus on utilizing low-resolution data obtained from sensor technology for early stress detection and evaluating stress detection models under real-world conditions. Moreover, the potential of physiological signals to infer mental stress information remains largely unexplored in lifelog retrieval systems. This thesis addresses these gaps through empirical investigations and explores the potential of utilizing physiological signals for stress detection and their integration within the state-of-the-art (SOTA) lifelog retrieval system. The main contributions of this thesis are as follows. Firstly, statistical analyses are conducted to investigate the feasibility of using low-resolution data for stress detection and emphasize the superiority of subject-dependent models over subject-independent models, thereby proposing the optimal approach to training stress detection models with low-resolution data. Secondly, longitudinal stress lifelog data is collected to evaluate stress detection models in real-world settings. It is proposed that training lifelog models on physiological signals in real-world settings is crucial to avoid detection inaccuracies caused by differences between laboratory and free-living conditions. Finally, a state-of-the-art lifelog interactive retrieval system called \lifeseeker is developed, incorporating the stress-moment filter function. Experimental results demonstrate that integrating this function improves the overall performance of the system in both interactive and non-interactive modes. In summary, this thesis contributes to the understanding of stress detection applied in real-world settings and showcases the potential of integrating stress information for enhancing personalized lifelog retrieval system performance

    Continuous Estimation of Smoking Lapse Risk from Noisy Wrist Sensor Data Using Sparse and Positive-Only Labels

    Get PDF
    Estimating the imminent risk of adverse health behaviors provides opportunities for developing effective behavioral intervention mechanisms to prevent the occurrence of the target behavior. One of the key goals is to find opportune moments for intervention by passively detecting the rising risk of an imminent adverse behavior. Significant progress in mobile health research and the ability to continuously sense internal and external states of individual health and behavior has paved the way for detecting diverse risk factors from mobile sensor data. The next frontier in this research is to account for the combined effects of these risk factors to produce a composite risk score of adverse behaviors using wearable sensors convenient for daily use. Developing a machine learning-based model for assessing the risk of smoking lapse in the natural environment faces significant outstanding challenges requiring the development of novel and unique methodologies for each of them. The first challenge is coming up with an accurate representation of noisy and incomplete sensor data to encode the present and historical influence of behavioral cues, mental states, and the interactions of individuals with their ever-changing environment. The next noteworthy challenge is the absence of confirmed negative labels of low-risk states and adequate precise annotations of high-risk states. Finally, the model should work on convenient wearable devices to facilitate widespread adoption in research and practice. In this dissertation, we develop methods that account for the multi-faceted nature of smoking lapse behavior to train and evaluate a machine learning model capable of estimating composite risk scores in the natural environment. We first develop mRisk, which combines the effects of various mHealth biomarkers such as stress, physical activity, and location history in producing the risk of smoking lapse using sequential deep neural networks. We propose an event-based encoding of sensor data to reduce the effect of noises and then present an approach to efficiently model the historical influence of recent and past sensor-derived contexts on the likelihood of smoking lapse. To circumvent the lack of confirmed negative labels (i.e., annotated low-risk moments) and only a few positive labels (i.e., sensor-based detection of smoking lapse corroborated by self-reports), we propose a new loss function to accurately optimize the models. We build the mRisk models using biomarker (stress, physical activity) streams derived from chest-worn sensors. Adapting the models to work with less invasive and more convenient wrist-based sensors requires adapting the biomarker detection models to work with wrist-worn sensor data. To that end, we develop robust stress and activity inference methodologies from noisy wrist-sensor data. We first propose CQP, which quantifies wrist-sensor collected PPG data quality. Next, we show that integrating CQP within the inference pipeline improves accuracy-yield trade-offs associated with stress detection from wrist-worn PPG sensors in the natural environment. mRisk also requires sensor-based precise detection of smoking events and confirmation through self-reports to extract positive labels. Hence, we develop rSmoke, an orientation-invariant smoking detection model that is robust to the variations in sensor data resulting from orientation switches in the field. We train the proposed mRisk risk estimation models using the wrist-based inferences of lapse risk factors. To evaluate the utility of the risk models, we simulate the delivery of intelligent smoking interventions to at-risk participants as informed by the composite risk scores. Our results demonstrate the envisaged impact of machine learning-based models operating on wrist-worn wearable sensor data to output continuous smoking lapse risk scores. The novel methodologies we propose throughout this dissertation help instigate a new frontier in smoking research that can potentially improve the smoking abstinence rate in participants willing to quit
    corecore