2,024 research outputs found

    Pedestrian-Synthesis-GAN: Generating Pedestrian Data in Real Scene and Beyond

    Full text link
    State-of-the-art pedestrian detection models have achieved great success in many benchmarks. However, these models require lots of annotation information and the labeling process usually takes much time and efforts. In this paper, we propose a method to generate labeled pedestrian data and adapt them to support the training of pedestrian detectors. The proposed framework is built on the Generative Adversarial Network (GAN) with multiple discriminators, trying to synthesize realistic pedestrians and learn the background context simultaneously. To handle the pedestrians of different sizes, we adopt the Spatial Pyramid Pooling (SPP) layer in the discriminator. We conduct experiments on two benchmarks. The results show that our framework can smoothly synthesize pedestrians on background images of variations and different levels of details. To quantitatively evaluate our approach, we add the generated samples into training data of the baseline pedestrian detectors and show the synthetic images are able to improve the detectors' performance.Comment: v2.0,adding supplementar

    BAOD: Budget-Aware Object Detection

    Full text link
    We study the problem of object detection from a novel perspective in which annotation budget constraints are taken into consideration, appropriately coined Budget Aware Object Detection (BAOD). When provided with a fixed budget, we propose a strategy for building a diverse and informative dataset that can be used to optimally train a robust detector. We investigate both optimization and learning-based methods to sample which images to annotate and what type of annotation (strongly or weakly supervised) to annotate them with. We adopt a hybrid supervised learning framework to train the object detector from both these types of annotation. We conduct a comprehensive empirical study showing that a handcrafted optimization method outperforms other selection techniques including random sampling, uncertainty sampling and active learning. By combining an optimal image/annotation selection scheme with hybrid supervised learning to solve the BAOD problem, we show that one can achieve the performance of a strongly supervised detector on PASCAL-VOC 2007 while saving 12.8% of its original annotation budget. Furthermore, when 100%100\% of the budget is used, it surpasses this performance by 2.0 mAP percentage points

    cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600 Papers Survey

    Full text link
    The paper gives futuristic challenges disscussed in the cvpaper.challenge. In 2015 and 2016, we thoroughly study 1,600+ papers in several conferences/journals such as CVPR/ICCV/ECCV/NIPS/PAMI/IJCV

    Monocular Plan View Networks for Autonomous Driving

    Full text link
    Convolutions on monocular dash cam videos capture spatial invariances in the image plane but do not explicitly reason about distances and depth. We propose a simple transformation of observations into a bird's eye view, also known as plan view, for end-to-end control. We detect vehicles and pedestrians in the first person view and project them into an overhead plan view. This representation provides an abstraction of the environment from which a deep network can easily deduce the positions and directions of entities. Additionally, the plan view enables us to leverage advances in 3D object detection in conjunction with deep policy learning. We evaluate our monocular plan view network on the photo-realistic Grand Theft Auto V simulator. A network using both a plan view and front view causes less than half as many collisions as previous detection-based methods and an order of magnitude fewer collisions than pure pixel-based policies.Comment: 8 pages, 9 figure

    Weakly Supervised Adversarial Domain Adaptation for Semantic Segmentation in Urban Scenes

    Full text link
    Semantic segmentation, a pixel-level vision task, is developed rapidly by using convolutional neural networks (CNNs). Training CNNs requires a large amount of labeled data, but manually annotating data is difficult. For emancipating manpower, in recent years, some synthetic datasets are released. However, they are still different from real scenes, which causes that training a model on the synthetic data (source domain) cannot achieve a good performance on real urban scenes (target domain). In this paper, we propose a weakly supervised adversarial domain adaptation to improve the segmentation performance from synthetic data to real scenes, which consists of three deep neural networks. To be specific, a detection and segmentation ("DS" for short) model focuses on detecting objects and predicting segmentation map; a pixel-level domain classifier ("PDC" for short) tries to distinguish the image features from which domains; an object-level domain classifier ("ODC" for short) discriminates the objects from which domains and predicts the objects classes. PDC and ODC are treated as the discriminators, and DS is considered as the generator. By adversarial learning, DS is supposed to learn domain-invariant features. In experiments, our proposed method yields the new record of mIoU metric in the same problem.Comment: To appear at TI

    Domain Randomization for Scene-Specific Car Detection and Pose Estimation

    Full text link
    We address the issue of domain gap when making use of synthetic data to train a scene-specific object detector and pose estimator. While previous works have shown that the constraints of learning a scene-specific model can be leveraged to create geometrically and photometrically consistent synthetic data, care must be taken to design synthetic content which is as close as possible to the real-world data distribution. In this work, we propose to solve domain gap through the use of appearance randomization to generate a wide range of synthetic objects to span the space of realistic images for training. An ablation study of our results is presented to delineate the individual contribution of different components in the randomization process. We evaluate our method on VIRAT, UA-DETRAC, EPFL-Car datasets, where we demonstrate that using scene specific domain randomized synthetic data is better than fine-tuning off-the-shelf models on limited real data

    Neural Person Search Machines

    Full text link
    We investigate the problem of person search in the wild in this work. Instead of comparing the query against all candidate regions generated in a query-blind manner, we propose to recursively shrink the search area from the whole image till achieving precise localization of the target person, by fully exploiting information from the query and contextual cues in every recursive search step. We develop the Neural Person Search Machines (NPSM) to implement such recursive localization for person search. Benefiting from its neural search mechanism, NPSM is able to selectively shrink its focus from a loose region to a tighter one containing the target automatically. In this process, NPSM employs an internal primitive memory component to memorize the query representation which modulates the attention and augments its robustness to other distracting regions. Evaluations on two benchmark datasets, CUHK-SYSU Person Search dataset and PRW dataset, have demonstrated that our method can outperform current state-of-the-arts in both mAP and top-1 evaluation protocols.Comment: ICCV2017 camera read

    Dark Model Adaptation: Semantic Image Segmentation from Daytime to Nighttime

    Full text link
    This work addresses the problem of semantic image segmentation of nighttime scenes. Although considerable progress has been made in semantic image segmentation, it is mainly related to daytime scenarios. This paper proposes a novel method to progressive adapt the semantic models trained on daytime scenes, along with large-scale annotations therein, to nighttime scenes via the bridge of twilight time -- the time between dawn and sunrise, or between sunset and dusk. The goal of the method is to alleviate the cost of human annotation for nighttime images by transferring knowledge from standard daytime conditions. In addition to the method, a new dataset of road scenes is compiled; it consists of 35,000 images ranging from daytime to twilight time and to nighttime. Also, a subset of the nighttime images are densely annotated for method evaluation. Our experiments show that our method is effective for model adaptation from daytime scenes to nighttime scenes, without using extra human annotation.Comment: Accepted to International Conference on Intelligent Transportation Systems (ITSC 2018

    Deep Learning for Generic Object Detection: A Survey

    Full text link
    Object detection, one of the most fundamental and challenging problems in computer vision, seeks to locate object instances from a large number of predefined categories in natural images. Deep learning techniques have emerged as a powerful strategy for learning feature representations directly from data and have led to remarkable breakthroughs in the field of generic object detection. Given this period of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought about by deep learning techniques. More than 300 research contributions are included in this survey, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics. We finish the survey by identifying promising directions for future research.Comment: IJCV Mino

    A Survey on Deep Learning Methods for Robot Vision

    Full text link
    Deep learning has allowed a paradigm shift in pattern recognition, from using hand-crafted features together with statistical classifiers to using general-purpose learning procedures for learning data-driven representations, features, and classifiers together. The application of this new paradigm has been particularly successful in computer vision, in which the development of deep learning methods for vision applications has become a hot research topic. Given that deep learning has already attracted the attention of the robot vision community, the main purpose of this survey is to address the use of deep learning in robot vision. To achieve this, a comprehensive overview of deep learning and its usage in computer vision is given, that includes a description of the most frequently used neural models and their main application areas. Then, the standard methodology and tools used for designing deep-learning based vision systems are presented. Afterwards, a review of the principal work using deep learning in robot vision is presented, as well as current and future trends related to the use of deep learning in robotics. This survey is intended to be a guide for the developers of robot vision systems
    corecore