100,844 research outputs found

    Near-Optimal Coverage Path Planning with Turn Costs

    Full text link
    Coverage path planning is a fundamental challenge in robotics, with diverse applications in aerial surveillance, manufacturing, cleaning, inspection, agriculture, and more. The main objective is to devise a trajectory for an agent that efficiently covers a given area, while minimizing time or energy consumption. Existing practical approaches often lack a solid theoretical foundation, relying on purely heuristic methods, or overly abstracting the problem to a simple Traveling Salesman Problem in Grid Graphs. Moreover, the considered cost functions only rarely consider turn cost, prize-collecting variants for uneven cover demand, or arbitrary geometric regions. In this paper, we describe an array of systematic methods for handling arbitrary meshes derived from intricate, polygonal environments. This adaptation paves the way to compute efficient coverage paths with a robust theoretical foundation for real-world robotic applications. Through comprehensive evaluations, we demonstrate that the algorithm also exhibits low optimality gaps, while efficiently handling complex environments. Furthermore, we showcase its versatility in handling partial coverage and accommodating heterogeneous passage costs, offering the flexibility to trade off coverage quality and time efficiency

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    Navigation, localization and stabilization of formations of unmanned aerial and ground vehicles

    Get PDF
    A leader-follower formation driving algorithm developed for control of heterogeneous groups of unmanned micro aerial and ground vehicles stabilized under a top-view relative localization is presented in this paper. The core of the proposed method lies in a novel avoidance function, in which the entire 3D formation is represented by a convex hull projected along a desired path to be followed by the group. Such a representation of the formation provides non-collision trajectories of the robots and respects requirements of the direct visibility between the team members in environment with static as well as dynamic obstacles, which is crucial for the top-view localization. The algorithm is suited for utilization of a simple yet stable visual based navigation of the group (referred to as GeNav), which together with the on-board relative localization enables deployment of large teams of micro-scale robots in environments without any available global localization system. We formulate a novel Model Predictive Control (MPC) based concept that enables to respond to the changing environment and that provides a robust solution with team members' failure tolerance included. The performance of the proposed method is verified by numerical and hardware experiments inspired by reconnaissance and surveillance missions

    Differentiable Algorithm Networks for Composable Robot Learning

    Full text link
    This paper introduces the Differentiable Algorithm Network (DAN), a composable architecture for robot learning systems. A DAN is composed of neural network modules, each encoding a differentiable robot algorithm and an associated model; and it is trained end-to-end from data. DAN combines the strengths of model-driven modular system design and data-driven end-to-end learning. The algorithms and models act as structural assumptions to reduce the data requirements for learning; end-to-end learning allows the modules to adapt to one another and compensate for imperfect models and algorithms, in order to achieve the best overall system performance. We illustrate the DAN methodology through a case study on a simulated robot system, which learns to navigate in complex 3-D environments with only local visual observations and an image of a partially correct 2-D floor map.Comment: RSS 2019 camera ready. Video is available at https://youtu.be/4jcYlTSJF4

    A Software Suite for the Control and the Monitoring of Adaptive Robotic Ecologies

    Get PDF
    Adaptive robotic ecologies are networks of heterogeneous robotic devices (sensors, actuators, automated appliances) pervasively embedded in everyday environments, where they learn to cooperate towards the achievement of complex tasks. While their flexibility makes them an increasingly popular way to improve a system’s reliability, scalability, robustness and autonomy, their effective realisation demands integrated control and software solutions for the specification, integration and management of their highly heterogeneous and computational constrained components. In this extended abstract we briefly illustrate the characteristic requirements dictated by robotic ecologies, discuss our experience in developing adaptive robotic ecologies, and provide an overview of the specific solutions developed as part of the EU FP7 RUBICON Project
    corecore