1,135 research outputs found

    Trajectory Optimization for Unknown Constrained Systems using Reinforcement Learning

    Full text link
    In this paper, we propose a reinforcement learning-based algorithm for trajectory optimization for constrained dynamical systems. This problem is motivated by the fact that for most robotic systems, the dynamics may not always be known. Generating smooth, dynamically feasible trajectories could be difficult for such systems. Using sampling-based algorithms for motion planning may result in trajectories that are prone to undesirable control jumps. However, they can usually provide a good reference trajectory which a model-free reinforcement learning algorithm can then exploit by limiting the search domain and quickly finding a dynamically smooth trajectory. We use this idea to train a reinforcement learning agent to learn a dynamically smooth trajectory in a curriculum learning setting. Furthermore, for generalization, we parameterize the policies with goal locations, so that the agent can be trained for multiple goals simultaneously. We show result in both simulated environments as well as real experiments, for a 66-DoF manipulator arm operated in position-controlled mode to validate the proposed idea. We compare the proposed ideas against a PID controller which is used to track a designed trajectory in configuration space. Our experiments show that our RL agent trained with a reference path outperformed a model-free PID controller of the type commonly used on many robotic platforms for trajectory tracking.Comment: 8 pages, 6 figures, Accepted to IROS 201

    A Fast Integrated Planning and Control Framework for Autonomous Driving via Imitation Learning

    Full text link
    For safe and efficient planning and control in autonomous driving, we need a driving policy which can achieve desirable driving quality in long-term horizon with guaranteed safety and feasibility. Optimization-based approaches, such as Model Predictive Control (MPC), can provide such optimal policies, but their computational complexity is generally unacceptable for real-time implementation. To address this problem, we propose a fast integrated planning and control framework that combines learning- and optimization-based approaches in a two-layer hierarchical structure. The first layer, defined as the "policy layer", is established by a neural network which learns the long-term optimal driving policy generated by MPC. The second layer, called the "execution layer", is a short-term optimization-based controller that tracks the reference trajecotries given by the "policy layer" with guaranteed short-term safety and feasibility. Moreover, with efficient and highly-representative features, a small-size neural network is sufficient in the "policy layer" to handle many complicated driving scenarios. This renders online imitation learning with Dataset Aggregation (DAgger) so that the performance of the "policy layer" can be improved rapidly and continuously online. Several exampled driving scenarios are demonstrated to verify the effectiveness and efficiency of the proposed framework

    Realtime Collision Avoidance for Mobile Robots in Dense Crowds using Implicit Multi-sensor Fusion and Deep Reinforcement Learning

    Full text link
    We present a novel learning-based collision avoidance algorithm, CrowdSteer, for mobile robots operating in dense and crowded environments. Our approach is end-to-end and uses multiple perception sensors such as a 2-D lidar along with a depth camera to sense surrounding dynamic agents and compute collision-free velocities. Our training approach is based on the sim-to-real paradigm and uses high fidelity 3-D simulations of pedestrians and the environment to train a policy using Proximal Policy Optimization (PPO). We show that our learned navigation model is directly transferable to previously unseen virtual and dense real-world environments. We have integrated our algorithm with differential drive robots and evaluated its performance in narrow scenarios such as dense crowds, narrow corridors, T-junctions, L-junctions, etc. In practice, our approach can perform real-time collision avoidance and generate smooth trajectories in such complex scenarios. We also compare the performance with prior methods based on metrics such as trajectory length, mean time to goal, success rate, and smoothness and observe considerable improvement.Comment: 8 pages, 7 figure

    Learning Agile Robotic Locomotion Skills by Imitating Animals

    Full text link
    Reproducing the diverse and agile locomotion skills of animals has been a longstanding challenge in robotics. While manually-designed controllers have been able to emulate many complex behaviors, building such controllers involves a time-consuming and difficult development process, often requiring substantial expertise of the nuances of each skill. Reinforcement learning provides an appealing alternative for automating the manual effort involved in the development of controllers. However, designing learning objectives that elicit the desired behaviors from an agent can also require a great deal of skill-specific expertise. In this work, we present an imitation learning system that enables legged robots to learn agile locomotion skills by imitating real-world animals. We show that by leveraging reference motion data, a single learning-based approach is able to automatically synthesize controllers for a diverse repertoire behaviors for legged robots. By incorporating sample efficient domain adaptation techniques into the training process, our system is able to learn adaptive policies in simulation that can then be quickly adapted for real-world deployment. To demonstrate the effectiveness of our system, we train an 18-DoF quadruped robot to perform a variety of agile behaviors ranging from different locomotion gaits to dynamic hops and turns

    Imitating Driver Behavior with Generative Adversarial Networks

    Full text link
    The ability to accurately predict and simulate human driving behavior is critical for the development of intelligent transportation systems. Traditional modeling methods have employed simple parametric models and behavioral cloning. This paper adopts a method for overcoming the problem of cascading errors inherent in prior approaches, resulting in realistic behavior that is robust to trajectory perturbations. We extend Generative Adversarial Imitation Learning to the training of recurrent policies, and we demonstrate that our model outperforms rule-based controllers and maximum likelihood models in realistic highway simulations. Our model both reproduces emergent behavior of human drivers, such as lane change rate, while maintaining realistic control over long time horizons.Comment: 8 pages, 6 figure

    Operation and Imitation under Safety-Aware Shared Control

    Full text link
    We describe a shared control methodology that can, without knowledge of the task, be used to improve a human's control of a dynamic system, be used as a training mechanism, and be used in conjunction with Imitation Learning to generate autonomous policies that recreate novel behaviors. Our algorithm introduces autonomy that assists the human partner by enforcing safety and stability constraints. The autonomous agent has no a priori knowledge of the desired task and therefore only adds control information when there is concern for the safety of the system. We evaluate the efficacy of our approach with a human subjects study consisting of 20 participants. We find that our shared control algorithm significantly improves the rate at which users are able to successfully execute novel behaviors. Experimental results suggest that the benefits of our safety-aware shared control algorithm also extend to the human partner's understanding of the system and their control skill. Finally, we demonstrate how a combination of our safety-aware shared control algorithm and Imitation Learning can be used to autonomously recreate the demonstrated behaviors.Comment: Published in WAFR 201

    Variational Discriminator Bottleneck: Improving Imitation Learning, Inverse RL, and GANs by Constraining Information Flow

    Full text link
    Adversarial learning methods have been proposed for a wide range of applications, but the training of adversarial models can be notoriously unstable. Effectively balancing the performance of the generator and discriminator is critical, since a discriminator that achieves very high accuracy will produce relatively uninformative gradients. In this work, we propose a simple and general technique to constrain information flow in the discriminator by means of an information bottleneck. By enforcing a constraint on the mutual information between the observations and the discriminator's internal representation, we can effectively modulate the discriminator's accuracy and maintain useful and informative gradients. We demonstrate that our proposed variational discriminator bottleneck (VDB) leads to significant improvements across three distinct application areas for adversarial learning algorithms. Our primary evaluation studies the applicability of the VDB to imitation learning of dynamic continuous control skills, such as running. We show that our method can learn such skills directly from \emph{raw} video demonstrations, substantially outperforming prior adversarial imitation learning methods. The VDB can also be combined with adversarial inverse reinforcement learning to learn parsimonious reward functions that can be transferred and re-optimized in new settings. Finally, we demonstrate that VDB can train GANs more effectively for image generation, improving upon a number of prior stabilization methods

    Exploring applications of deep reinforcement learning for real-world autonomous driving systems

    Full text link
    Deep Reinforcement Learning (DRL) has become increasingly powerful in recent years, with notable achievements such as Deepmind's AlphaGo. It has been successfully deployed in commercial vehicles like Mobileye's path planning system. However, a vast majority of work on DRL is focused on toy examples in controlled synthetic car simulator environments such as TORCS and CARLA. In general, DRL is still at its infancy in terms of usability in real-world applications. Our goal in this paper is to encourage real-world deployment of DRL in various autonomous driving (AD) applications. We first provide an overview of the tasks in autonomous driving systems, reinforcement learning algorithms and applications of DRL to AD systems. We then discuss the challenges which must be addressed to enable further progress towards real-world deployment.Comment: Accepted for Oral Presentation at VISAPP 201

    Motion Synthesis and Control for Autonomous Agents using Generative Models and Reinforcement Learning

    Get PDF
    Imitating and predicting human motions have wide applications in both graphics and robotics, from developing realistic models of human movement and behavior in immersive virtual worlds and games to improving autonomous navigation for service agents deployed in the real world. Traditional approaches for motion imitation and prediction typically rely on pre-defined rules to model agent behaviors or use reinforcement learning with manually designed reward functions. Despite impressive results, such approaches cannot effectively capture the diversity of motor behaviors and the decision making capabilities of human beings. Furthermore, manually designing a model or reward function to explicitly describe human motion characteristics often involves laborious fine-tuning and repeated experiments, and may suffer from generalization issues. In this thesis, we explore data-driven approaches using generative models and reinforcement learning to study and simulate human motions. Specifically, we begin with motion synthesis and control of physically simulated agents imitating a wide range of human motor skills, and then focus on improving the local navigation decisions of autonomous agents in multi-agent interaction settings. For physics-based agent control, we introduce an imitation learning framework built upon generative adversarial networks and reinforcement learning that enables humanoid agents to learn motor skills from a few examples of human reference motion data. Our approach generates high-fidelity motions and robust controllers without needing to manually design and finetune a reward function, allowing at the same time interactive switching between different controllers based on user input. Based on this framework, we further propose a multi-objective learning scheme for composite and task-driven control of humanoid agents. Our multi-objective learning scheme balances the simultaneous learning of disparate motions from multiple reference sources and multiple goal-directed control objectives in an adaptive way, enabling the training of efficient composite motion controllers. Additionally, we present a general framework for fast and robust learning of motor control skills. Our framework exploits particle filtering to dynamically explore and discretize the high-dimensional action space involved in continuous control tasks, and provides a multi-modal policy as a substitute for the commonly used Gaussian policies. For navigation learning, we leverage human crowd data to train a human-inspired collision avoidance policy by combining knowledge distillation and reinforcement learning. Our approach enables autonomous agents to take human-like actions during goal-directed steering in fully decentralized, multi-agent environments. To inform better control in such environments, we propose SocialVAE, a variational autoencoder based architecture that uses timewise latent variables with socially-aware conditions and a backward posterior approximation to perform agent trajectory prediction. Our approach improves current state-of-the-art performance on trajectory prediction tasks in daily human interaction scenarios and more complex scenes involving interactions between NBA players. We further extend SocialVAE by exploiting semantic maps as context conditions to generate map-compliant trajectory prediction. Our approach processes context conditions and social conditions occurring during agent-agent interactions in an integrated manner through the use of a dual-attention mechanism. We demonstrate the real-time performance of our approach and its ability to provide high-fidelity, multi-modal predictions on various large-scale vehicle trajectory prediction tasks

    Socially Compliant Navigation through Raw Depth Inputs with Generative Adversarial Imitation Learning

    Full text link
    We present an approach for mobile robots to learn to navigate in dynamic environments with pedestrians via raw depth inputs, in a socially compliant manner. To achieve this, we adopt a generative adversarial imitation learning (GAIL) strategy, which improves upon a pre-trained behavior cloning policy. Our approach overcomes the disadvantages of previous methods, as they heavily depend on the full knowledge of the location and velocity information of nearby pedestrians, which not only requires specific sensors, but also the extraction of such state information from raw sensory input could consume much computation time. In this paper, our proposed GAIL-based model performs directly on raw depth inputs and plans in real-time. Experiments show that our GAIL-based approach greatly improves the safety and efficiency of the behavior of mobile robots from pure behavior cloning. The real-world deployment also shows that our method is capable of guiding autonomous vehicles to navigate in a socially compliant manner directly through raw depth inputs. In addition, we release a simulation plugin for modeling pedestrian behaviors based on the social force model.Comment: ICRA 2018 camera-ready version. 7 pages, video link: https://www.youtube.com/watch?v=0hw0GD3lkA
    • …
    corecore