1,243 research outputs found

    Towards markerless orthopaedic navigation with intuitive Optical See-through Head-mounted displays

    Get PDF
    The potential of image-guided orthopaedic navigation to improve surgical outcomes has been well-recognised during the last two decades. According to the tracked pose of target bone, the anatomical information and preoperative plans are updated and displayed to surgeons, so that they can follow the guidance to reach the goal with higher accuracy, efficiency and reproducibility. Despite their success, current orthopaedic navigation systems have two main limitations: for target tracking, artificial markers have to be drilled into the bone and calibrated manually to the bone, which introduces the risk of additional harm to patients and increases operating complexity; for guidance visualisation, surgeons have to shift their attention from the patient to an external 2D monitor, which is disruptive and can be mentally stressful. Motivated by these limitations, this thesis explores the development of an intuitive, compact and reliable navigation system for orthopaedic surgery. To this end, conventional marker-based tracking is replaced by a novel markerless tracking algorithm, and the 2D display is replaced by a 3D holographic Optical see-through (OST) Head-mounted display (HMD) precisely calibrated to a user's perspective. Our markerless tracking, facilitated by a commercial RGBD camera, is achieved through deep learning-based bone segmentation followed by real-time pose registration. For robust segmentation, a new network is designed and efficiently augmented by a synthetic dataset. Our segmentation network outperforms the state-of-the-art regarding occlusion-robustness, device-agnostic behaviour, and target generalisability. For reliable pose registration, a novel Bounded Iterative Closest Point (BICP) workflow is proposed. The improved markerless tracking can achieve a clinically acceptable error of 0.95 deg and 2.17 mm according to a phantom test. OST displays allow ubiquitous enrichment of perceived real world with contextually blended virtual aids through semi-transparent glasses. They have been recognised as a suitable visual tool for surgical assistance, since they do not hinder the surgeon's natural eyesight and require no attention shift or perspective conversion. The OST calibration is crucial to ensure locational-coherent surgical guidance. Current calibration methods are either human error-prone or hardly applicable to commercial devices. To this end, we propose an offline camera-based calibration method that is highly accurate yet easy to implement in commercial products, and an online alignment-based refinement that is user-centric and robust against user error. The proposed methods are proven to be superior to other similar State-of- the-art (SOTA)s regarding calibration convenience and display accuracy. Motivated by the ambition to develop the world's first markerless OST navigation system, we integrated the developed markerless tracking and calibration scheme into a complete navigation workflow designed for femur drilling tasks during knee replacement surgery. We verify the usability of our designed OST system with an experienced orthopaedic surgeon by a cadaver study. Our test validates the potential of the proposed markerless navigation system for surgical assistance, although further improvement is required for clinical acceptance.Open Acces

    Augmented Reality as a Method for Expanded Presentation of Objects of Digitized Heritage

    Get PDF
    Augmented reality is the latest among information technologies in modern electronics industry. The essence is in the addition of advanced computer graphics in real and/or digitized images. This paper gives a brief analysis of the concept and the approaches to implementing augmented reality for an expanded presentation of a digitized object of national cultural and/or scientific heritage. ACM Computing Classification System (1998): H.5.1, H.5.3, I.3.7

    Vision-Based Three Dimensional Hand Interaction In Markerless Augmented Reality Environment

    Get PDF
    Kemunculan realiti tambahan membolehkan objek maya untuk wujud bersama dengan dunia sebenar dan ini memberi kaedah baru untuk berinteraksi dengan objek maya. Sistem realiti tambahan memerlukan penunjuk tertentu, seperti penanda untuk menentukan bagaimana objek maya wujud dalam dunia sebenar. Penunjuk tertentu mesti diperolehi untuk menggunakan sistem realiti tambahan, tetapi susah untuk seseorang mempunyai penunjuk tersebut pada bila-bila masa. Tangan manusia, yang merupakan sebahagian dari badan manusia dapat menyelesaikan masalah ini. Selain itu, tangan boleh digunakan untuk berinteraksi dengan objek maya dalam dunia realiti tambahan. Tesis ini membentangkan sebuah sistem realiti tambahan yang menggunakan tangan terbuka untuk pendaftaran objek maya dalam persekitaran sebenar dan membolehkan pengguna untuk menggunakan tangan yang satu lagi untuk berinteraksi dengan objek maya yang ditambahkan dalam tiga-matra. Untuk menggunakan tangan untuk pendaftaran dan interaksi dalam realiti tambahan, postur dan isyarat tangan pengguna perlu dikesan. The advent of augmented reality (AR) enables virtual objects to be superimposed on the real world and provides a new way to interact with the virtual objects. AR system requires an indicator to determine for how the virtual objects aligned in the real world. The indicator must first be obtained to access to a particular AR system. It may be inconvenient to have the indicator in reach at all time. Human hand, which is part of the human body may be a solution for this. Besides, hand is also a promising tool for interaction with virtual objects in AR environment. This thesis presents a markerless Augmented Reality system which utilizes outstretched hand for registration of virtual objects in the real environment and enables the users to have three dimensional (3D) interaction with the augmented virtual objects. To employ the hand for registration and interaction in AR, hand postures and gestures that the user perform has to be recognized

    Study of Augmented Reality based manufacturing for further integration of quality control 4.0: a systematic literature review

    Get PDF
    Augmented Reality (AR) has gradually become a mainstream technology enabling Industry 4.0 and its maturity has also grown over time. AR has been applied to support different processes on the shop-floor level, such as assembly, maintenance, etc. As various processes in manufacturing require high quality and near-zero error rates to ensure the demands and safety of end-users, AR can also equip operators with immersive interfaces to enhance productivity, accuracy and autonomy in the quality sector. However, there is currently no systematic review paper about AR technology enhancing the quality sector. The purpose of this paper is to conduct a systematic literature review (SLR) to conclude about the emerging interest in using AR as an assisting technology for the quality sector in an industry 4.0 context. Five research questions (RQs), with a set of selection criteria, are predefined to support the objectives of this SLR. In addition, different research databases are used for the paper identification phase following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) methodology to find the answers for the predefined RQs. It is found that, in spite of staying behind the assembly and maintenance sector in terms of AR-based solutions, there is a tendency towards interest in developing and implementing AR-assisted quality applications. There are three main categories of current AR-based solutions for quality sector, which are AR-based apps as a virtual Lean tool, AR-assisted metrology and AR-based solutions for in-line quality control. In this SLR, an AR architecture layer framework has been improved to classify articles into different layers which are finally integrated into a systematic design and development methodology for the development of long-term AR-based solutions for the quality sector in the future

    ISAR: Ein Autorensystem für Interaktive Tische

    Get PDF
    Developing augmented reality systems involves several challenges, that prevent end users and experts from non-technical domains, such as education, to experiment with this technology. In this research we introduce ISAR, an authoring system for augmented reality tabletops targeting users from non-technical domains. ISAR allows non-technical users to create their own interactive tabletop applications and experiment with the use of this technology in domains such as educations, industrial training, and medical rehabilitation.Die Entwicklung von Augmented-Reality-Systemen ist mit mehreren Herausforderungen verbunden, die Endbenutzer und Experten aus nicht-technischen Bereichen, wie z.B. dem Bildungswesen, daran hindern, mit dieser Technologie zu experimentieren. In dieser Forschung stellen wir ISAR vor, ein Autorensystem für Augmented-Reality-Tabletops, das sich an Benutzer aus nicht-technischen Bereichen richtet. ISAR ermöglicht es nicht-technischen Anwendern, ihre eigenen interaktiven Tabletop-Anwendungen zu erstellen und mit dem Einsatz dieser Technologie in Bereichen wie Bildung, industrieller Ausbildung und medizinischer Rehabilitation zu experimentieren
    corecore