2,262 research outputs found

    Development of an acoustic modem using synthesizable microcontroller

    Get PDF
    In this thesis, an acoustic modem is developed on a digital programmable device for underwater communications. The system consists of a synthesize microcontroller as well the different elements necessaries for the modulation and demodulation of the signals. That should be developed for the design. The objective is to develop the system using a high-level hardware description language and to show the system’s functioning on a flexible platform (a programable logical device) with the perspective that, in the future, it can be implemented in a personalized integrated circuit and thus obtain a compact and energy efficient system

    A Real Time Locating System based on TDOA estimation of UWB pulse sequences

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Remote Side-Channel Attacks on Heterogeneous SoC

    Get PDF
    International audienceThanks to their performance and flexibility, FPGAs are increasingly adopted for hardware acceleration on various platforms such as system on chip and cloud datacenters. Their use for commercial and industrial purposes raises concern about potential hardware security threats. By getting access to the FPGA fabric, an attacker could implement malicious logic to perform remote hardware attacks. Recently, several papers demonstrated that FPGA can be used to eavesdrop or disturb the activity of resources located within and outside the chip. In a complex SoC that contains a processor and a FPGA within the same die, we experimentally demonstrate that FPGA-based voltage sensors can eavesdrop computations running on the CPU and that advanced side-channel attacks can be conducted remotely to retrieve the secret key of a symmetric crypto-algorithm

    A Miniature Acoustic Device for Tracking Small Marine Animals or Submerged Drifters

    Get PDF
    This paper presents an acoustic archival tag capable of tracking small marine animals. It is also a technology that can be ported to other platforms, such as the next-generation acoustic and Argo floats as well as gliders. Tracking is achieved by standard RAFOS triangulation using the arrival times of unique sound signals emitted by moored sources. At the core of the tag is a custom microchip that controls all system operations. It incorporates the critical acoustic arrival time detector, a thermal sensor, and a pressure sensor interface. All the electronic components are housed inside a cylindrical hydrophone of 25.4-mm length and 10.7-mm diameter. The collected data are archived in nonvolatile memory chips with a total capacity of 4 Mb, sufficient storage to record position, temperature, and pressure on an hourly basis for 2 years. The tag consumes 4–5 μW in standby mode and between 60 and 90 μW while the sound arrival time detector is in operation. The power is provided by two button cell silver-oxide batteries, which enable an active tag lifetime of approximately 2 years

    A Flexible Design Space Exploration Platform for Wireless Sensor Networks

    Get PDF
    My dissertation presents a flexible design space exploration platform for wireless sensor networks and an extensible design flow. The conceived platform enables the fast creation and evaluation of custom sensor node hard- and software architectures without developing custom hardware. One important feature of my platform is that it allows the evaluation of the computational- and communication domain of a sensor node in respect to power consumption

    CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties

    Get PDF
    The increasing processing power of today’s HW/SW platforms leads to the integration of more and more functions in a single device. Additional design challenges arise when these functions share computing resources and belong to different criticality levels. CONTREX complements current activities in the area of predictable computing platforms and segregation mechanisms with techniques to consider the extra-functional properties, i.e., timing constraints, power, and temperature. CONTREX enables energy efficient and cost aware design through analysis and optimization of these properties with regard to application demands at different criticality levels. This article presents an overview of the CONTREX European project, its main innovative technology (extension of a model based design approach, functional and extra-functional analysis with executable models and run-time management) and the final results of three industrial use-cases from different domain (avionics, automotive and telecommunication).The work leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2011 under grant agreement no. 611146

    Distributed Self-Deployment in Visual Sensor Networks

    Get PDF
    Autonomous decision making in a variety of wireless sensor networks, and also in visual sensor networks (VSNs), specifically, has become a highly researched field in recent years. There is a wide array of applications ranging from military operations to civilian environmental monitoring. To make VSNs highly useful in any type of setting, a number of fundamental problems must be solved, such as sensor node localization, self-deployment, target recognition, etc. This presents a plethora of challenges, as low cost, low energy consumption, and excellent scalability are desired. This thesis describes the design and implementation of a distributed self-deployment method in wireless visual sensor networks. Algorithms are developed for the imple- mentation of both centralized and distributed self-deployment schemes, given a set of randomly placed sensor nodes. In order to self-deploy these nodes, the fundamental problem of localization must first be solved. To this end, visual structured marker detection is utilized to obtain coordinate data in reference to artificial markers, which then is used to deduct the location of a node in an absolute coordinate system. Once localization is complete, the nodes in the VSN are deployed in either centralized or distributed fashion, to pre-defined target locations. As is usually the case, in cen- tralized mode there is a single processing node which makes the vast majority of decisions, and since this one node has knowledge of all events in the VSN, it is able to make optimal decisions, at the expense of time and scalability. The distributed mode, however, offers increased performance in regard to time and scalability, but the final deployment result may be considered sub-optimal. Software is developed for both modes of operations, and a GUI is provided as an easy control interface, which also allows for visualization of the VSN progress in the testing environment. The algorithms are tested on an actual testbed consisting of five custom-built Mobile Sensor Platforms (MSPs). The MSPs are configured to have a camera and an ultra-sonic range sensor. The visual marker detection uses the camera, and for obstacle avoidance during motion, the sonic ranger is used. Eight markers are placed in an area measuring 4 Ă— 4 meters, which is surrounded by white background. Both algorithms are evaluated for speed and accuracy. Experimental results show that localization using the visual markers has an accuracy of about 96% in ideal lighting conditions, and the proposed self-deployment algorithms perform as desired. The MSPs suffer from some physical design limitations, such as lacking wheel encoders for reliable movement in straight lines. Experiments show that over 1 meter of travel the MSPs deviate from the path by an average of 7.5 cm in a lateral direction. Finally, the time needed for each algorithm to complete is recorded, and it is found that centralized and distributed modes require an average of 34.3 and 28.6 seconds, respectively, effectively meaning that distributed self-deployment is approximately 16.5% faster than centralized deployment

    CMOS IMAGE SENSORS FOR LAB-ON-A-CHIP MICROSYSTEM DESIGN

    Get PDF
    The work described herein serves as a foundation for the development of CMOS imaging in lab-on-a-chip microsystems. Lab-on-a-chip (LOC) systems attempt to emulate the functionality of a cell biology lab by incorporating multiple sensing modalidites into a single microscale system. LOC are applicable to drug development, implantable sensors, cell-based bio-chemical detectors and radiation detectors. The common theme across these systems is achieving performance under severe resource constraints including noise, bandwidth, power and size. The contributions of this work are in the areas of two core lab-on-a-chip imaging functions: object detection and optical measurements
    • …
    corecore