156 research outputs found

    Aggressive maneuver oriented robust actuator fault estimation of a 3-DOF helicopter prototype considering measurement noises

    Get PDF
    This paper presents a robust actuator fault estimation strategy design for a 3-DOF helicopter prototype which can be adapted to aggressive maneuvers. First, considering large pitch angle condition during flight, nonlinear coupling characteristic of the helicopter system is exploited. As the pitch angle can be measured in real time, a polytopic linear parameter-varying (LPV) model is developed for the helicopter system. Furthermore, considering measurement noises in the actual helicopter system, the dynamical model of helicopter system is modified accordingly. Then, based on the modified polytopic LPV model, a robust unknown input observer (UIO) is developed for the helicopter system to realize actuator fault estimation, in which both measurement noises and large pitch angle are considered. Robust performance of proposed fault estimation approach is guaranteed by using energy-to-energy strategy. And the observer gains are calculated by using linear matrix inequalities. Finally, based on a 3-DOF helicopter prototype, both simulations and experiments are conducted. The effects of measurement noises and large pitch angle on the fault estimation performance are sufficiently demonstrated. And effectiveness as well as advantages of the proposed observer is verified by using comparative analysis

    A neural network based landing method for an unmanned aerial vehicle with soft landing gears

    Get PDF
    This paper presents the design, implementation, and testing of a soft landing gear together with a neural network-based control method for replicating avian landing behavior on non-flat surfaces. With full consideration of unmanned aerial vehicles and landing gear requirements, a quadrotor helicopter, comprised of one flying unit and one landing assistance unit, is employed. Considering the touchdown speed and posture, a novel design of a soft mechanism for non-flat surfaces is proposed, in order to absorb the remaining landing impact. The framework of the control strategy is designed based on a derived dynamic model. A neural network-based backstepping controller is applied to achieve the desired trajectory. The simulation and outdoor testing results attest to the effectiveness and reliability of the proposed control method

    A neural network based landing method for an unmanned aerial vehicle with soft landing gears

    Get PDF
    This paper presents the design, implementation, and testing of a soft landing gear together with a neural network-based control method for replicating avian landing behavior on non-flat surfaces. With full consideration of unmanned aerial vehicles and landing gear requirements, a quadrotor helicopter, comprised of one flying unit and one landing assistance unit, is employed. Considering the touchdown speed and posture, a novel design of a soft mechanism for non-flat surfaces is proposed, in order to absorb the remaining landing impact. The framework of the control strategy is designed based on a derived dynamic model. A neural network-based backstepping controller is applied to achieve the desired trajectory. The simulation and outdoor testing results attest to the effectiveness and reliability of the proposed control method

    Neural network control design for an unmanned aerial vehicle with a suspended payload

    Get PDF
    Unmanned aerial vehicles (UAVs) demonstrate excellent manoeuvrability in cluttered environments, which makes them a suitable platform as a data collection and parcel delivering system. In this work, the attitude and position control challenges for a drone with a package connected by a wire is analysed. During the delivering task, it is very difficult to eliminate the external unpredictable disturbances. A robust neural network-based backstepping sliding mode control method is designed, which is capable of monitoring the drone's flight path and desired attitude with a suspended cable attached. The convergence of the position and attitude errors together with the Lyapunov function are employed to attest to the robustness of the nonlinear transportation platform. The proposed control system is tested with a simulation and in an outdoor environment. The simulation and open field test results for the UAV transportation platform verify the controllers' reliability

    Neural network control design for an unmanned aerial vehicle with a suspended payload

    Get PDF
    Unmanned aerial vehicles (UAVs) demonstrate excellent manoeuvrability in cluttered environments, which makes them a suitable platform as a data collection and parcel delivering system. In this work, the attitude and position control challenges for a drone with a package connected by a wire is analysed. During the delivering task, it is very difficult to eliminate the external unpredictable disturbances. A robust neural network-based backstepping sliding mode control method is designed, which is capable of monitoring the drone's flight path and desired attitude with a suspended cable attached. The convergence of the position and attitude errors together with the Lyapunov function are employed to attest to the robustness of the nonlinear transportation platform. The proposed control system is tested with a simulation and in an outdoor environment. The simulation and open field test results for the UAV transportation platform verify the controllers' reliability

    Towards MAV Autonomous Flight: A Modeling and Control Approach

    Full text link
    This thesis is about modeling and control of miniature rotary-wing flying vehicles, with a special emphasis on quadrotor and coaxial systems. Mathematical models for simulation and nonlinear control approaches are introduced and subsequently applied to commercial aircrafts: the DraganFlyer and the Hummingbird quadrotors, which have been hardware-modified in order to perform experimental autonomous flying. Furthermore, a first-ever approach for modeling commercial micro coaxial mechanism is presented using a flying-toy called the Micro-mosquito

    Development of U-model enhansed nonlinear systems

    Get PDF
    Nonlinear control system design has been widely recognised as a challenging issue where the key objective is to develop a general model prototype with conciseness, flexibility and manipulability, so that the designed control system can best match the required performance or specifications. As a generic systematic approach, U-model concept appeared in Prof. Quanmin Zhu’s Doctoral thesis, and U-model approach was firstly published in the journal paper titled with ‘U-model based pole placement for nonlinear plants’ in 2002.The U-model polynomial prototype precisely describes a wide range of smooth nonlinear polynomial models, defined as a controller output u(t-1) based time-varying polynomial models converted from the original nonlinear model. Within this equivalent U-model expression, the first study of U-model based pole placement controller design for nonlinear plants is a simple mapping exercise from ordinary linear and nonlinear difference equations to time-varying polynomials in terms of the plant input u(t-1). The U-model framework realised the concise and applicable design for nonlinear control system by using such linear polynomial control system design approaches.Since the first publication, the U-model methodology has progressed and evolved over the course of a decade. By using the U-model technique, researchers have proposed many different linear algorithms for the design of control systems for the nonlinear polynomial model including; adaptive control, internal control, sliding mode control, predictive control and neural network control. However, limited research has been concerned with the design and analysis of robust stability and performance of U-model based control systems.This project firstly proposes a suitable method to analyse the robust stability of the developed U-model based pole placement control systems against uncertainty. The parameter variation is bounded, thus the robust stability margin of the closed loop system can be determined by using LMI (Linear Matrix Inequality) based robust stability analysis procedure. U-block model is defined as an input output linear closed loop model with pole assignor converted from the U-model based control system. With the bridge of U-model approach, it connects the linear state space design approach with the nonlinear polynomial model. Therefore, LMI based linear robust controller design approaches are able to design enhanced robust control system within the U-block model structure.With such development, the first stage U-model methodology provides concise and flexible solutions for complex problems, where linear controller design methodologies are directly applied to nonlinear polynomial plant-based control system design. The next milestone work expands the U-model technique into state space control systems to establish the new framework, defined as the U-state space model, providing a generic prototype for the simplification of nonlinear state space design approaches.The U-state space model is first described as a controller output u(t-1) based time-varying state equations, which is equivalent to the original linear/nonlinear state space models after conversion. Then, a basic idea of corresponding U-state feedback control system design method is proposed based on the U-model principle. The linear state space feedback control design approach is employed to nonlinear plants described in state space realisation under U-state space structure. The desired state vectors defined as xd(t), are determined by closed loop performance (such as pole placement) or designer specifications (such as LQR). Then the desired state vectors substitute the desired state vectors into original state space equations (regarded as next time state variable xd(t) = x(t) ). Therefore, the controller output u(t-1) can be obtained from one of the roots of a root-solving iterative algorithm.A quad-rotor rotorcraft dynamic model and inverted pendulum system are introduced to verify the U-state space control system design approach for MIMO/SIMO system. The linear design approach is used to determine the closed loop state equation, then the controller output can be obtained from root solver. Numerical examples and case studies are employed in this study to demonstrate the effectiveness of the proposed methods

    Fast Adaptive Robust Differentiator Based Robust-Adaptive Control of Grid-Tied Inverters with a New L Filter Design Method

    Get PDF
    In this research, a new nonlinear and adaptive state feedback controller with a fast-adaptive robust differentiator is presented for grid-tied inverters. All parameters and external disturbances are taken as uncertain in the design of the proposed controller without the disadvantages of singularity and over-parameterization. A robust differentiator based on the second order sliding mode is also developed with a fast-adaptive structure to be able to consider the time derivative of the virtual control input. Unlike the conventional backstepping, the proposed differentiator overcomes the problem of explosion of complexity. In the closed-loop control system, the three phase source currents and direct current (DC) bus voltage are assumed to be available for feedback. Using the Lyapunov stability theory, it is proven that the overall control system has the global asymptotic stability. In addition, a new simple L filter design method based on the total harmonic distortion approach is also proposed. Simulations and experimental results show that the proposed controller assurances drive the tracking errors to zero with better performance, and it is robust against all uncertainties. Moreover, the proposed L filter design method matches the total harmonic distortion (THD) aim in the design with the experimental result

    An Intelligent Autopilot System that learns piloting skills from human pilots by imitation

    Get PDF
    An Intelligent Autopilot System (IAS) that can learn piloting skills by observing and imitating expert human pilots is proposed. IAS is a potential solution to the current problem of Automatic Flight Control Systems of being unable to handle flight uncertainties, and the need to construct control models manually. A robust Learning by Imitation approach is proposed which uses human pilots to demonstrate the task to be learned in a flight simulator while training datasets are captured from these demonstrations. The datasets are then used by Artificial Neural Networks to generate control models automatically. The control models imitate the skills of the human pilot when performing piloting tasks including handling flight uncertainties such as severe weather conditions. Experiments show that IAS performs learned take-off, climb, and slow ascent tasks with high accuracy even after being presented with limited examples, as measured by Mean Absolute Error and Mean Absolute Deviation. The results demonstrate that the IAS is capable of imitating low-level sub-cognitive skills such as rapid and continuous stabilization attempts in stormy weather conditions, and high-level strategic skills such as the sequence of sub-tasks necessary to pilot an aircraft starting from the stationary position on the runway, and ending with a steady cruise
    • …
    corecore