40,416 research outputs found

    Real-time multimedia coding and transmission

    Get PDF

    Online multipath convolutional coding for real-time transmission

    Get PDF
    Most of multipath multimedia streaming proposals use Forward Error Correction (FEC) approach to protect from packet losses. However, FEC does not sustain well burst of losses even when packets from a given FEC block are spread over multiple paths. In this article, we propose an online multipath convolutional coding for real-time multipath streaming based on an on-the-fly coding scheme called Tetrys. We evaluate the benefits brought out by this coding scheme inside an existing FEC multipath load splitting proposal known as Encoded Multipath Streaming (EMS). We demonstrate that Tetrys consistently outperforms FEC in both uniform and burst losses with EMS scheme. We also propose a modification of the standard EMS algorithm that greatly improves the performance in terms of packet recovery. Finally, we analyze different spreading policies of the Tetrys redundancy traffic between available paths and observe that the longer propagation delay path should be preferably used to carry repair packets.Comment: Online multipath convolutional coding for real-time transmission (2012

    A Lossless Image Compression using Modified Entropy Coding

    Get PDF
    Due to size limitation and complexity of the hardware in transmission applications, multimedia systems and computer communications, compression techniques are much necessary. The reasons for multimedia systems to compress the data, large storage is required to save the compressed data, the storage devices are relatively slow which in real-time, has constrain to play multimedia data, and the network bandwidth, that has limitations to real-time data transmission. This paper presents an enhanced approach of run length coding. First the DCT applied, and the quantization done on the image to be compressed, then the modified run length coding technique has been used to compress the image losslessly. This scheme represents the occurrence of repeated zeros by RUN, and a non-zero coefficient by LEVEL. It removes the value of RUN, as for the sequence of non-zero coefficients it is zero for most of the time and for a zero present between non-zero coefficients is replaced by ‘0’ which results in larger compression than RUN, LEVEL (1, 0) pair is used

    Enhancing error resilience in wireless transmitted compressed video sequences through a probabilistic neural network core

    Get PDF
    Video compression standards commonly employed in the delivery of real-time wireless multimedia services regularly adopt variable length codes (VLCs) for efficient transmission. This coding technique achieves the necessary high compression ratios at the expense of an increased system’s vulnerability to transmission errors. The more frequent presence of transmission errors in wireless channels requires video compression standards to accurately detect, localize and conceal any corrupted macroblocks (MBs) present in the video sequence. Unfortunately, standard decoders offer limited error detection and localization capabilities posing a bound on the perceived video quality of the reconstructed video sequence. This paper presents a novel solution which enhances the error detection and localization capabilities of standard decoders through the application of a Probabilistic Neural Network (PNN). The proposed solution generally outperforms other error detection mechanisms present in literature, as it manages to improve the standard decoder’s error detection rate by up to 95.74%. Index Terms — Error detection coding, learning systems, multimedia communications, video coding, wireless networks.peer-reviewe

    Network Coding with Multimedia Transmission and Cognitive Networking: An Implementation based on Software-Defined Radio

    Get PDF
    Network coding (NC) is considered a breakthrough to improve throughput, robustness, and security of wireless networks. Although the theoretical aspects of NC have been extensively investigated, there have been only few experiments with pure NC schematics. This paper presents an implementation of NC under a two-way relay model and extends it to two\ua0non-straightforward scenarios: (i) multimedia transmission with layered coding and multiple-description coding, and (ii) cognitive radio with Vandermonde frequency division multiplexing (VFDM). The implementation is in real time and based on software-defined radio (SDR). The experimental results show that, by combining NC and source coding, we can control the quality of the received multimedia content in an on-demand manner. Whereas in the VFDM-based cognitive radio, the quality of the received content in the primary receiver is low (due to imperfect channel estimation) yet retrievable. Our implementation results serve as a proof for the practicability of network coding in relevant applications

    Network Coding with Multimedia Transmission and Cognitive Networking: An Implementation based on Software-Defined Radio

    Get PDF
    Network coding (NC) is considered a breakthrough to improve throughput, robustness, and security of wireless networks. Although the theoretical aspects of NC have been extensively investigated, there have been only few experiments with pure NC schematics. This paper presents an implementation of NC under a two-way relay model and extends it to two non-straightforward scenarios: (i) multimedia transmission with layered coding and multiple-description coding, and (ii) cognitive radio with Vandermonde frequency division multiplexing (VFDM). The implementation is in real time and based on software-defined radio (SDR). The experimental results show that, by combining NC and source coding, we can control the quality of the received multimedia content in an on-demand manner. Whereas in the VFDM-based cognitive radio, the quality of the received content in the primary receiver is low (due to imperfect channel estimation) yet retrievable. Our implementation results serve as a proof for the practicability of network coding in relevant applications

    An efficient rate control algorithm for a wavelet video codec

    Get PDF
    Rate control plays an essential role in video coding and transmission to provide the best video quality at the receiver's end given the constraint of certain network conditions. In this paper, a rate control algorithm using the Quality Factor (QF) optimization method is proposed for the wavelet-based video codec and implemented on an open source Dirac video encoder. A mathematical model which we call Rate-QF (R - QF) model is derived to generate the optimum QF for the current coding frame according to the target bitrate. The proposed algorithm is a complete one pass process and does not require complex mathematical calculation. The process of calculating the QF is quite simple and further calculation is not required for each coded frame. The experimental results show that the proposed algorithm can control the bitrate precisely (within 1% of target bitrate in average). Moreover, the variation of bitrate over each Group of Pictures (GOPs) is lower than that of H.264. This is an advantage in preventing the buffer overflow and underflow for real-time multimedia data streaming

    Resilient Digital Video Transmission over Wireless Channels using Pixel-Level Artefact Detection Mechanisms

    Get PDF
    Recent advances in communications and video coding technology have brought multimedia communications into everyday life, where a variety of services and applications are being integrated within different devices such that multimedia content is provided everywhere and on any device. H.264/AVC provides a major advance on preceding video coding standards obtaining as much as twice the coding efficiency over these standards (Richardson I.E.G., 2003, Wiegand T. & Sullivan G.J., 2007). Furthermore, this new codec inserts video related information within network abstraction layer units (NALUs), which facilitates the transmission of H.264/AVC coded sequences over a variety of network environments (Stockhammer, T. & Hannuksela M.M., 2005) making it applicable for a broad range of applications such as TV broadcasting, mobile TV, video-on-demand, digital media storage, high definition TV, multimedia streaming and conversational applications. Real-time wireless conversational and broadcast applications are particularly challenging as, in general, reliable delivery cannot be guaranteed (Stockhammer, T. & Hannuksela M.M., 2005). The H.264/AVC standard specifies several error resilient strategies to minimise the effect of transmission errors on the perceptual quality of the reconstructed video sequences. However, these methods assume a packet-loss scenario where the receiver discards and conceals all the video information contained within a corrupted NALU packet. This implies that the error resilient methods adopted by the standard operate at a lower bound since not all the information contained within a corrupted NALU packet is un-utilizable (Stockhammer, T. et al., 2003).peer-reviewe

    Multimedia data transmission for mobile wireless applications

    Get PDF
    The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.Title from title screen of research.pdf file viewed on (November 14, 2006)Includes bibliographical references.Vita.Thesis (Ph. D.) University of Missouri-Columbia 2005.Dissertations, Academic -- University of Missouri--Columbia -- Electrical engineering.In this dissertation, we first address robust multimedia data transmission for mobile application. The first topic is proxy-based handheld device access to live NASA satellite weather images. The second topic is a real time easy-to-use 3D volume visualization system on mobile handheld devices. We also address energy efficient transmission for mobile application. We proposed two image transmission schemes. The first scheme is a collaborative image transmission scheme. The second scheme is multiple bit stream image encoding and small fragment burst transmission system. Finally, we address the research of applying distributed source coding in image and video coding. We show that applying distributed source coding in multiple description image coding improves the error resilience, and our syndrome-based video encoding scheme provides low complexity video encoder that is very desirable for mobile wireless application
    corecore