3,607 research outputs found

    Pyramic array: An FPGA based platform for many-channel audio acquisition

    Get PDF
    Array processing of audio data has many interesting applications: acoustic beamforming, source separation, indoor localization, room geometry estimation, etc. Recent advances in MEMS has produced tiny microphones, analog or even with digital converter integrated. This opens the door to create arrays with a massive number of microphones. We dub such an array many-channel by analogy to many-core processors.Microphone arrays techniques present compelling applications for robotic implementations. Those techniques can allow robots to listen to their environment and infer clues from it. Such features might enable capabilities such as natural interaction with humans, interpreting spoken commands or the localization of victims during search and rescue tasks. However, under noisy conditions robotic implementations of microphone arrays might degrade their precision when localizing sound sources. For practical applications, human hearing still leaves behind microphone arrays. Daniel Kisch is an example of how humans are able to efficiently perform echo-localization to recognize their environment, even in noisy and reverberant environments. For ubiquitous computing, another limitation of acoustic localization algorithms is within their capabilities of performing real-time Digital Signal Processing (DSP) operations. To tackle those problems, tradeoffs between size, weight, cost and power consumption compromise the design of acoustic sensors for practical applications. This work presents the design and operation of a large microphone array for DSP applications in realistic environments. To address those problems this project introduces the Pyramic sound capture system designed at LAP in EPFL. Pyramic is a custom hardware which possesses 48 microphones dis- tributed in the edges of a tetrahedron. The microphone arrays interact with a Terasic DE1-SoC board from Altera Cyclone V family devices, which combines a Hard Processor System (HPS) and a Field Programmable Gate Array (FPGA) in the same die. The HPS part integrates a dual- core ARM-based Cortex-A9 processor, which combined with the power of FPGA design suitable for processing multichannel microphone signals. This thesis explains the implementation of the Pyramic array. Moreover, FPGA-based hardware accelerators have been designed to imple- ment a Master SPI communication with the array and a parallel 48 channels FIR filters cascade of the audio data for delay-and-sum beamforming applications. Additionally, the configura- tion of the HPS part allows the Pyramic array to be controlled through a Linux based OS. The main purpose of the project is to develop a flexible platform in which real-time echo-location algorithms can be implemented. The effectiveness of the Pyramic array design is illustrated by testing the recorded data with offline direction of arrival algorithms developed at LCAV in EPFL

    Joint model-based recognition and localization of overlapped acoustic events using a set of distributed small microphone arrays

    Get PDF
    In the analysis of acoustic scenes, often the occurring sounds have to be detected in time, recognized, and localized in space. Usually, each of these tasks is done separately. In this paper, a model-based approach to jointly carry them out for the case of multiple simultaneous sources is presented and tested. The recognized event classes and their respective room positions are obtained with a single system that maximizes the combination of a large set of scores, each one resulting from a different acoustic event model and a different beamformer output signal, which comes from one of several arbitrarily-located small microphone arrays. By using a two-step method, the experimental work for a specific scenario consisting of meeting-room acoustic events, either isolated or overlapped with speech, is reported. Tests carried out with two datasets show the advantage of the proposed approach with respect to some usual techniques, and that the inclusion of estimated priors brings a further performance improvement.Comment: Computational acoustic scene analysis, microphone array signal processing, acoustic event detectio

    SoundCompass: a distributed MEMS microphone array-based sensor for sound source localization

    Get PDF
    Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors. Aiming to produce accurate noise pollution maps, we developed the SoundCompass, a low-cost sound sensor capable of measuring local noise levels and sound field directionality. Our first prototype is composed of a sensor array of 52 Microelectromechanical systems (MEMS) microphones, an inertial measuring unit and a low-power field-programmable gate array (FPGA). This article presents the SoundCompass's hardware and firmware design together with a data fusion technique that exploits the sensing capabilities of the SoundCompass in a wireless sensor network to localize noise pollution sources. Live tests produced a sound source localization accuracy of a few centimeters in a 25-m2 anechoic chamber, while simulation results accurately located up to five broadband sound sources in a 10,000-m2 open field

    Structured Sparsity Models for Multiparty Speech Recovery from Reverberant Recordings

    Get PDF
    We tackle the multi-party speech recovery problem through modeling the acoustic of the reverberant chambers. Our approach exploits structured sparsity models to perform room modeling and speech recovery. We propose a scheme for characterizing the room acoustic from the unknown competing speech sources relying on localization of the early images of the speakers by sparse approximation of the spatial spectra of the virtual sources in a free-space model. The images are then clustered exploiting the low-rank structure of the spectro-temporal components belonging to each source. This enables us to identify the early support of the room impulse response function and its unique map to the room geometry. To further tackle the ambiguity of the reflection ratios, we propose a novel formulation of the reverberation model and estimate the absorption coefficients through a convex optimization exploiting joint sparsity model formulated upon spatio-spectral sparsity of concurrent speech representation. The acoustic parameters are then incorporated for separating individual speech signals through either structured sparse recovery or inverse filtering the acoustic channels. The experiments conducted on real data recordings demonstrate the effectiveness of the proposed approach for multi-party speech recovery and recognition.Comment: 31 page

    Using Acoustic Holography for Vibration Analysis

    Get PDF
    Disertační práce se zabývá bezkontaktní analýzou vibrací pomocí metod akustické holografie v blízkém poli. Akustická holografie v blízkém poli je experimentální metoda, která rekonstruuje akustické pole v těsné blízkosti povrchu vibrujícího předmětu na základě měření akustického tlaku nebo akustické rychlosti v určité vzdálenosti od zkoumaného předmětu. Konkrétní realizace této metody závisí na použitém výpočetním algoritmu. Vlastní práce je zaměřena zejména na rozbor algoritmů, které využívají k rekonstrukci zvukového pole v blízkosti vibrujícího objektu transformaci do domény vlnových čísel (prostorová transformace), kde probíhá vlastní výpočet. V úvodu práce je vysvětlena základní teorie metody akustické holografie v blízkém poli s popisem základních vlastností a dále rozborem konkrétních nejčastěji používaných algoritmům pro lokalizaci a charakterizaci zdroje zvuku a pro následnou vibrační analýzu. Stěžejní část práce se věnuje pokročilým metodám zpracování, které se snaží určitým způsobem optimalizovat přesnost predice zvukového pole v blízkosti vibrujícího předmětu v reálných podmínkách. Jde zejména o problematiku použitého měřicího systému s akustickými snímači, které nejsou ideální, a dále o možnost měření v prostorách s difúzním charakterem zvukového pole. Pro tento případ byla na základě literárního průzkumu optimalizována a ověřena metoda využívající dvouvrstvé mikrofonní pole, které umožňuje oddělení zvukových polí přicházejících z různých stran a tedy úspěšné měření v uzavřených prostorách např. kabin automobilů a letadel. Součástí práce byla také optimalizace, rozšíření a následné ověření algoritmů publikovaných v posledních letech pro měření v reálných podmínkách za použití běžně dostupných akustických snímačů.The main aim of the thesis is application of near-field acoustic holography for non-contact vibration analysis. Near-field acoustic holography is an experimental technique for reconstruction of sound field close to the surface of the vibrating object based on measurement of sound pressure or acoustic particle velocity in certain distance from the examined object. Practical realization of this method depends on used calculation procedure. The thesis is focused on analysis of acoustic holography algorithms with transformation into wavenumber domain (spatial transformation) where the reconstruction of the sound field near vibrating object is calculated. The introductory part of the thesis describes the theory of near-field acoustic holography with general characteristics and with analysis of most common algorithms used for localization and characterization of sound source and consequent vibration analysis. Principal part of the thesis deals with advanced processing methods where these methods try to optimize the accuracy of prediction of sound field near vibrating object in real environment. In this study, real measurement conditions represent the measurement system with non-ideal acoustic sensors and also areas with reverberant sound field. Based on literature study, there has been optimized and verified the new method which uses double layer microphone array to separate incoming and outgoing sound field, thus allows successful measurement in confined space e.g. cabins of cars and airplanes. Part of the thesis has been also focused on optimization, extension and successive experimental validation of selected classical algorithms published in last decade for possible measurement in real conditions and with common acoustic sensors.
    corecore