80 research outputs found

    Online Deep Learning for Improved Trajectory Tracking of Unmanned Aerial Vehicles Using Expert Knowledge

    Full text link
    This work presents an online learning-based control method for improved trajectory tracking of unmanned aerial vehicles using both deep learning and expert knowledge. The proposed method does not require the exact model of the system to be controlled, and it is robust against variations in system dynamics as well as operational uncertainties. The learning is divided into two phases: offline (pre-)training and online (post-)training. In the former, a conventional controller performs a set of trajectories and, based on the input-output dataset, the deep neural network (DNN)-based controller is trained. In the latter, the trained DNN, which mimics the conventional controller, controls the system. Unlike the existing papers in the literature, the network is still being trained for different sets of trajectories which are not used in the training phase of DNN. Thanks to the rule-base, which contains the expert knowledge, the proposed framework learns the system dynamics and operational uncertainties in real-time. The experimental results show that the proposed online learning-based approach gives better trajectory tracking performance when compared to the only offline trained network.Comment: corrected version accepted for ICRA 201

    Image-based recognition, 3D localization, and retro-reflectivity evaluation of high-quantity low-cost roadway assets for enhanced condition assessment

    Get PDF
    Systematic condition assessment of high-quantity low-cost roadway assets such as traffic signs, guardrails, and pavement markings requires frequent reporting on location and up-to-date status of these assets. Today, most Departments of Transportation (DOTs) in the US collect data using camera-mounted vehicles to filter, annotate, organize, and present the data necessary for these assessments. However, the cost and complexity of the collection, analysis, and reporting as-is conditions result in sparse and infrequent monitoring. Thus, some of the gains in efficiency are consumed by monitoring costs. This dissertation proposes to improve frequency, detail, and applicability of image-based condition assessment via automating detection, classification, and 3D localization of multiple types of high-quantity low-cost roadway assets using both images collected by the DOTs and online databases such Google Street View Images. To address the new requirements of US Federal Highway Administration (FHWA), a new method is also developed that simulates nighttime visibility of traffic signs from images taken during daytime and measures their retro-reflectivity condition. To initiate detection and classification of high-quantity low-cost roadway assets from street-level images, a number of algorithms are proposed that automatically segment and localize high-level asset categories in 3D. The first set of algorithms focus on the task of detecting and segmenting assets at high-level categories. More specifically, a method based on Semantic Texton Forest classifiers, segments each geo-registered 2D video frame at the pixel-level based on shape, texture, and color. A Structure from Motion (SfM) procedure reconstructs the road and its assets in 3D. Next, a voting scheme assigns the most observed asset category to each point in 3D. The experimental results from application of this method are promising, nevertheless because this method relies on using supervised ground-truth pixel labels for training purposes, scaling it to various types of assets is challenging. To address this issue, a non-parametric image parsing method is proposed that leverages lazy learning scheme for segmentation and recognition of roadway assets. The semi-supervised technique used in the proposed method does not need training and provides ground truth data in a more efficient manner. It is easily scalable to thousands of video frames captured during data collection. Once the high-level asset categories are detected, specific techniques needs to be exploited to detect and classify the assets at a higher level of granularity. To this end, performance of three computer vision algorithms are evaluated for classification of traffic signs in presence of cluttered backgrounds and static and dynamic occlusions. Without making any prior assumptions about the location of traffic signs in 2D, the best performing method uses histograms of oriented gradients and color together with multiple one-vs-all Support Vector Machines, and classifies these assets into warning, regulatory, stop, and yield sign categories. To minimize the reliance on visual data collected by the DOTs and improve frequency and applicability of condition assessment, a new end-to-end procedure is presented that applies the above algorithms and creates comprehensive inventory of traffic signs using Google Street View images. By processing images extracted using Google Street View API and discriminative classification scores from all images that see a sign, the most probable 3D location of each traffic sign is derived and is shown on the Google Earth using a dynamic heat map. A data card containing information about location, type, and condition of each detected traffic sign is also created. Finally, a computer vision-based algorithm is proposed that measures retro-reflectivity of traffic signs during daytime using a vehicle mounted device. The algorithm simulates nighttime visibility of traffic signs from images taken during daytime and measures their retro-reflectivity. The technique is faster, cheaper, and safer compared to the state-of-the-art as it neither requires nighttime operation nor requires manual sign inspection. It also satisfies measurement guidelines set forth by FHWA both in terms of granularity and accuracy. To validate the techniques, new detailed video datasets and their ground-truth were generated from 2.2-mile smart road research facility and two interstate highways in the US. The comprehensive dataset contains over 11,000 annotated U.S. traffic sign images and exhibits large variations in sign pose, scale, background, illumination, and occlusion conditions. The performance of all algorithms were examined using these datasets. For retro-reflectivity measurement of traffic signs, experiments were conducted at different times of day and for different distances. Results were compared with a method recommended by ASTM standards. The experimental results show promise in scalability of these methods to reduce the time and effort required for developing road inventories, especially for those assets such as guardrails and traffic lights that are not typically considered in 2D asset recognition methods and also multiple categories of traffic signs. The applicability of Google Street View Images for inventory management purposes and also the technique for retro-reflectivity measurement during daytime demonstrate strong potential in lowering inspection costs and improving safety in practical applications

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF

    Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review

    Get PDF
    Modern hyperspectral imaging systems produce huge datasets potentially conveying a great abundance of information; such a resource, however, poses many challenges in the analysis and interpretation of these data. Deep learning approaches certainly offer a great variety of opportunities for solving classical imaging tasks and also for approaching new stimulating problems in the spatial–spectral domain. This is fundamental in the driving sector of Remote Sensing where hyperspectral technology was born and has mostly developed, but it is perhaps even more true in the multitude of current and evolving application sectors that involve these imaging technologies. The present review develops on two fronts: on the one hand, it is aimed at domain professionals who want to have an updated overview on how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, we want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields other than Remote Sensing are the original contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends

    Remote Sensing of the Oceans

    Get PDF
    This book covers different topics in the framework of remote sensing of the oceans. Latest research advancements and brand-new studies are presented that address the exploitation of remote sensing instruments and simulation tools to improve the understanding of ocean processes and enable cutting-edge applications with the aim of preserving the ocean environment and supporting the blue economy. Hence, this book provides a reference framework for state-of-the-art remote sensing methods that deal with the generation of added-value products and the geophysical information retrieval in related fields, including: Oil spill detection and discrimination; Analysis of tropical cyclones and sea echoes; Shoreline and aquaculture area extraction; Monitoring coastal marine litter and moving vessels; Processing of SAR, HF radar and UAV measurements

    Rich probabilistic models for semantic labeling

    Get PDF
    Das Ziel dieser Monographie ist es die Methoden und Anwendungen des semantischen Labelings zu erforschen. Unsere Beiträge zu diesem sich rasch entwickelten Thema sind bestimmte Aspekte der Modellierung und der Inferenz in probabilistischen Modellen und ihre Anwendungen in den interdisziplinären Bereichen der Computer Vision sowie medizinischer Bildverarbeitung und Fernerkundung

    UAV-Enabled Surface and Subsurface Characterization for Post-Earthquake Geotechnical Reconnaissance

    Full text link
    Major earthquakes continue to cause significant damage to infrastructure systems and the loss of life (e.g. 2016 Kaikoura, New Zealand; 2016 Muisne, Ecuador; 2015 Gorkha, Nepal). Following an earthquake, costly human-led reconnaissance studies are conducted to document structural or geotechnical damage and to collect perishable field data. Such efforts are faced with many daunting challenges including safety, resource limitations, and inaccessibility of sites. Unmanned Aerial Vehicles (UAV) represent a transformative tool for mitigating the effects of these challenges and generating spatially distributed and overall higher quality data compared to current manual approaches. UAVs enable multi-sensor data collection and offer a computational decision-making platform that could significantly influence post-earthquake reconnaissance approaches. As demonstrated in this research, UAVs can be used to document earthquake-affected geosystems by creating 3D geometric models of target sites, generate 2D and 3D imagery outputs to perform geomechanical assessments of exposed rock masses, and characterize subsurface field conditions using techniques such as in situ seismic surface wave testing. UAV-camera systems were used to collect images of geotechnical sites to model their 3D geometry using Structure-from-Motion (SfM). Key examples of lessons learned from applying UAV-based SfM to reconnaissance of earthquake-affected sites are presented. The results of 3D modeling and the input imagery were used to assess the mechanical properties of landslides and rock masses. An automatic and semi-automatic 2D fracture detection method was developed and integrated with a 3D, SfM, imaging framework. A UAV was then integrated with seismic surface wave testing to estimate the shear wave velocity of the subsurface materials, which is a critical input parameter in seismic response of geosystems. The UAV was outfitted with a payload release system to autonomously deliver an impulsive seismic source to the ground surface for multichannel analysis of surface waves (MASW) tests. The UAV was found to offer a mobile but higher-energy source than conventional seismic surface wave techniques and is the foundational component for developing the framework for fully-autonomous in situ shear wave velocity profiling.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145793/1/wwgreen_1.pd

    Combining Machine Learning with Computer Vision for Precision Agriculture Applications

    Get PDF
    University of Minnesota Ph.D. dissertation. April 2018. Major: Computer Science. Advisor: Nikolaos Papanikolopoulos. 1 computer file (PDF); x, 93 pages.Financial and social elements of modern societies are closely connected to the cultivation of corn. Due to its massive production, deficiencies during the cultivation process directly translate to major financial losses. Existing field monitoring solutions utilize aerial and ground means towards identifying sectors of the farmland presenting under-performing crops. Nevertheless, an inference element is still absent; that is the automated diagnose of the cause and severity of the deficiency. The early detection and treatment of crops deficiencies and the frequent evaluation of their growth status are thus tasks of great significance. Towards an automated health condition assessment, this thesis introduces schemes for the computation of plant health indices. First, we propose a methodology to detect nitrogen (N) deficiencies in corn fields and assess their severity at an early stage using low-cost RGB sensors. The introduced methodology is twofold. First, a low complexity recommendation scheme identifies candidate plants exhibiting nitrogen deficiency and second, a detection elimination step completes the inference loop by deciding which of the candidate plants are actually exhibiting that condition. Experimental results on a diverse real-world dataset achieve a 90.6% accuracy for the detection of N-deficient regions and support the extension of this methodology to other crops and deficiencies that show similar visual characteristics. Second, based on the 3D reconstruction of small batches of corn plants at growth stages between ''V3'' and ''V6'', an automated alternative to existing manual and cumbersome phenotype estimation methodologies is presented. The use of 3D models provides an elevated information content, when compared to planar methods, mainly due to the alleviation of leaf occlusions. High-resolution images of corn stalks are collected and used to obtain 3D models of plants of interest. Based on the extracted 3D point clouds, the calculation of a plethora of phenotypic characteristics for each 3D reconstruction are obtained such as the number of plants depicted with 88.1% accuracy, Leaf Area Index (LAI) with 92.48% accuracy, the height with 89.2% accuracy, the leaf length with 74.8% accuracy, and the location and the angles of leaves with respect to the stem. The last two variables are connected by showing the trend of the angles to change with respect to the leaf position on the stem as the crops grow. An experimental validation using both artificially made corn plants emulating real-world scenarios and real corn plants in different growth stages supports the efficacy of the proposed methodology. Although the proposed methodologies are agnostic to the platform that performs the data collection, for the presented experiments a MikroKopter Okto XL equipped with a Nikon D7200 RGB sensor and a DJI Matrice 100 with a Zenmuse X3 and a Zenmuze Z3 RGB high-resolution cameras were used. The flight altitude ranged between 6 and 15 m and the resolution of the images varies within a range of 0.2 to 0.47 cm/pixel. Thorough data collection and interpretation leads to a better understanding of the needs not only of the farm as a whole but to each individual plant providing a much higher granularity to potential treatment strategies. Through the thoughtful utilization of modern computer vision techniques, it is possible to achieve positive financial and environmental results for these tasks. The conclusions of this work, suggest a fully automated scheme for information gathering in modern farms capable of replacing current labor-intensive procedures, thus greatly impacting the timely detection of crop deficiencies
    • …
    corecore